Supplementary Information

Valley Polarization Caused by Crystalline Symmetry Breaking

Yuanyuan Wang, Wei Wei, ${ }^{*}$ Fengping Li, Xingshuai Lv, Baibiao Huang, and Ying Dai*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

\author{

* Corresponding authors:
 weiw@sdu.edu.cn
 daiy60@sdu.edu.cn
}

Computation methods

All calculations were performed on the basis of density functional theory ${ }^{1}$ as implemented in the Vienna $a b$ initio simulation package (VASP). ${ }^{2}$ The exchangecorrelation interaction was treated by the generalized gradient approximation (GGA) in form of Perdew-Burke-Ernzerhof (PBE) functional. ${ }^{3}$ The cutoff energy was set to 500 eV . The lattice constant and atom position were relaxed until the force on each atom was less than $0.01 \mathrm{eV} / \AA$, and the electronic iterations convergence criterion was set to $1 \times 10^{-5} \mathrm{eV}$. A Monkhorst-Pack (MP) grid of $15 \times 15 \times 1$ was used to sample the Brillouin zone. ${ }^{4}$ To avoid the interactions between adjacent layers, a vacuum space of $20 \AA$ was applied. The spin-orbit coupling (SOC) was considered in the calculations. The vibrational properties were obtained with PHONOPY code, ${ }^{5}$ in which the force constants were calculated with the finite-displacement method.

Tight-binding model

In this section, we show the details of the tight-binding (TB) model for the checkboard lattice, and two p orbitals were considered in our TB model. There are two sublattices in a unit cell, e.g., α and β sublattices, and we denote them as $\mu=\alpha, \beta$. The atom positions are denoted as $r_{n \mu}=R_{n}+r_{\mu}$, where R_{n} is the lattice vector and r_{μ} is the relative positions of the atoms in unit cell. The atomic orbital wave function is $\varphi_{\gamma}\left(r-r_{n \mu}\right)$, where γ refers to p_{x} and p_{y}. Then, the TB model is represented as

$$
H_{0}=\sum_{n, \mu} \varepsilon_{n \mu} c_{n \mu}^{+} c_{n \mu}+\sum_{n, \alpha, \beta} t_{n}^{\alpha \beta} c_{n \alpha}^{+} c_{n \beta}+\text { h.c.\#(1) }
$$

Under the Fourier Transformation, the TB Hamiltonian in the momentum space can be written as

$$
\begin{gathered}
H_{0}(k)=H_{+}(k)+H_{-}(k) \#(2) \\
H_{0}(k)=\sum_{n, \mu} \varepsilon_{n \mu} c_{n \mu}^{+}(k) c_{n \mu}(k)+\sum_{n, \alpha, \beta, \delta_{i}} t_{\delta_{i}}^{\alpha \beta} e^{-i k \cdot\left(r_{n \alpha}-r_{n \beta}\right)} c_{n \alpha}^{+} c_{n \beta}+h . c . \#(3)
\end{gathered}
$$

with basis being $\left(\left|p_{x^{\prime}}, \alpha, k\right\rangle,\left|p_{y^{\prime}}, \alpha, k\right\rangle,\left|p_{x}, \beta, k\right\rangle,\left|p_{y^{\prime}}, \beta, k\right\rangle\right)^{T}$, thus the matrix form of the Hamiltonian is

$$
\begin{gathered}
H_{0}=\left(\begin{array}{cccc}
h_{\alpha x} & 0 & h_{1} & h_{2} \\
0 & h_{\alpha y} & h_{2} & h_{1} \\
h_{1} & h_{2} & h_{\beta x} & 0 \\
h_{2} & h_{1} & 0 & h_{\beta y}
\end{array}\right) \#(4) \\
h_{\alpha x}=\varepsilon_{\alpha}+\alpha_{1} \cos \left(k_{x} a\right)+\alpha_{1}^{\prime} \cos \left(k_{y} a\right) \#(5) \\
h_{\beta x}=\varepsilon_{\beta}+\beta_{1} \cos \left(k_{x} a\right)+\beta_{1}^{\prime} \cos \left(k_{y} a\right) \#(6) \\
h_{\alpha y}=\varepsilon_{\alpha}+\alpha_{1}^{\prime} \cos \left(k_{x} a\right)+\alpha_{1} \cos \left(k_{y} a\right) \#(7) \\
h_{\beta y}=\varepsilon_{\beta}+\beta_{1}^{\prime} \cos \left(k_{x} a\right)+\beta_{1} \cos \left(k_{y} a\right) \#(8)
\end{gathered}
$$

$$
\begin{array}{r}
h_{1}=2 \cos \left(\frac{k_{x} a}{2}\right) \cos \left(\frac{k_{y} a}{2}\right)\left(\gamma_{1}+\gamma_{2}\right) \#(9) \\
h_{2}=-2 \sin \left(\frac{k_{x} a}{2}\right) \sin \left(\frac{k_{y} a}{2}\right)\left(\gamma_{1}+\gamma_{2}\right) \#(10)
\end{array}
$$

The parameters we used to obtain the energy dispersion shown in Fig. 1 are $\varepsilon_{\alpha}=1.2$, $\varepsilon_{\alpha}=-1.1, \alpha_{1}=0.6, \alpha_{1}^{\prime}=0.1, \beta_{1}=-0.5, \beta_{1}^{\prime}=-0.1, \gamma_{1}=0.49, \gamma_{2}=-0.1$ and $a=4.03$.

Then we consider the atomic spin-orbit interaction, the basis is $(|\uparrow\rangle,|\downarrow\rangle)^{T} \otimes\left(\left|p_{x}, \alpha, k\right\rangle,\left|p_{y}, \alpha, k\right\rangle,\left|p_{x}, \beta, k\right\rangle,\left|p_{y}, \beta, k\right\rangle\right)^{T}$, the spin-orbit coupling term is $H_{s o}=\left(\begin{array}{cc}0 & r_{s o} \\ r_{s o}{ }^{*} & 0\end{array}\right)$
$r_{s o}=\left(\begin{array}{cccc}r_{a x} & 0 & 0 & 0 \\ 0 & r_{a y} & 0 & 0 \\ 0 & 0 & r_{\beta x} & 0 \\ 0 & 0 & 0 & r_{\beta y}\end{array}\right)$
$r_{a x}=i \lambda_{a 1} \sin \left(k_{x} a\right)+\lambda_{a 2} \sin \left(k_{y} a\right)$
$r_{a y}=i \lambda_{a 2} \sin \left(k_{x} a\right)+\lambda_{a 1} \sin \left(k_{y} a\right)$
$r_{\beta x}=i \lambda_{\beta 1} \sin \left(k_{x} a\right)+\lambda_{\beta 2} \sin \left(k_{y} a\right)$
$r_{\beta y}=i \lambda_{\beta 2} \sin \left(k_{x} a\right)+\lambda_{\beta 1} \sin \left(k_{y} a\right)$
The total Hamiltonian is given by $H=I_{2 \times 2} \otimes H_{0}+H_{s o}+H^{\prime}$, and the perturbation of crystalline asymmetry can be written as $H^{\prime}=\Delta\left(I_{4 \times 4} \otimes \hat{\sigma}_{z}\right)$. The model gives a pair of valleys with energy degeneracy at X and X^{\prime} points as shown Figs. S 1 (a)-(d), and the perturbation lifts energy degeneracy between X and X ' points as shown in Figs. $\mathrm{S} 1(\mathrm{e})$ -
(h).

References

1 W. Kohn. L. J. Sham, Phys. Rev. 1965, 140, A1133.
2 G. Kresse J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
3 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
4 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
5 A. Togo, F. Oba, I. Tanaka, Phys. Rev. B 2008, 78, 134106.

Table S1 Total energy per atom, Bi-S bond length, and lattice parameters of TL LaOBiS_{2}. The total energy of the pristine structures $\left(\mathrm{DS}_{0}\right)$ is set to zero as a reference.

	DS_{0}	DS_{1}	DS_{2}	DS_{3}
Energy (meV)	0	-2.227	-2.232	-2.226
Bi-S bond (\AA)	$2.879 / 2.879$	$2.735 / 3.040$	$2.736 / 3.038$	$2.726 / 3.048$
$a(\AA)$	4.036	4.036	4.036	4.036
$b(\AA)$	4.036	4.036	4.036	4.036

Fig. S1 Band structures calculated by tight-binding model, in which different SOC strength and perturbation of crystalline asymmetry are applied. The parameters are exhibited in corresponding dispersions.

Fig. S2 Upper panel, energy dispersion of (a) pristine DS_{0} (b) DS_{1}, (c) DS_{2}, (d) DS_{3} and (e) DS_{3} with electric field applied, and the SOC is unconsidered. Lower panel exhibits the corresponding energy structures of (f) pristine DS_{0} (g) DS_{1}, (h) DS_{2}, (i) DS_{3} and (j) DS_{3} with electric field applied, and take SOC into account. The Fermi level is set as zero.

