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Fig. S1. Synthetic route of SS,-PDMS-MPI,,.

Synthesis of PDMS-MPI. Bis(3-aminopropyl)-terminated poly(dimethylsiloxane)
(H,N-PDMS-NH,, M,, = 5000-7000, 20.0 g, ~leq) and triethylamine (2 mL) were
stirred in anhydrous chloroform (100 mL) at 0 °C under nitrogen atmosphere for 1 h.
Subsequently, a solution of 4,4'-methylenebis(phenyl isocyanate) (1.0 g, leq) in
anhydrous chloroform (30 mL) was added dropwise for 30min. The resulting mixture
was stirred at room temperature for 3 days followed by evaporating the solvent to form
viscous liquid. Then methanol (30 mL) was poured into it to form precipitate-like
viscous liquid. The upper clear solution was decanted after settled for 30 minutes. The
precipitate-like liquid was dissolved in chloroform and washed with methanol (30 mL)
for 3 times to obtain purified PDMS-MPI. 'H NMR (400 MHz, CDCl;, §): 7.16-7.19
(m), 6.91-7.06 (m), 6.68-6.89 (m), 3.80-3.89 (m), 0.04 (b). Molecular weight according
to GPC: Mw = 81,893; Mn = 48,921 (b = 1.67).

Synthesis of SS,;-PDMS-MPI,,. 3,3'-disulfanediyldipropanoic acid (1.0 g) was
stirred in thionyl chloride (60 mL) at room temperature for 4 h. The white suspension
gradually turned into a light yellow solution. Then the solvent was evaporated under
vacuum to obtain yellow liquid 3,3'-disulfanediyldipropanoyl chloride (1.1 g).

Secondly, H,N-PDMS-NH, (20.0 g, ~leq) and triethylamine (2 mL) were stirred in



anhydrous CHCI3 (100 mL) at 0 °C under nitrogen atmosphere for 1 h. Subsequently, a
solution of 4,4'-methylenebis(phenyl isocyanate) (0.9 g, ~0.9 eq) in anhydrous
chloroform was added dropwise for 30 min. The mixture was then allowed to stir at
room temperature for 1 days. After that, a solution of 3,3'-disulfanediyldipropanoyl
chloride (0.1 g, ~0.1 eq) was added dropwise. The mixture was again stirred at room
temperature for 3 days. The same purified procedure as PDMS-MPI was used to obtain
purified SSy;-PDMS-MPI;,. 'H NMR (400 MHz, CDCl;, 8): 7.15 (s), 7.03-7.12 (m),
6.81-6.93 (m), 6.70 (s), 3.81-3.93 (m), 2.51-2.58 (m), 0.05 (b). Molecular weight
according to GPC: Mw = 94,987; Mn = 49,580 (b = 1.92).

Synthesis of SSy,-PDMS-MPI3 and SS(3;-PDMS-MPI, ;. SS;,-PDMS-MPI,s and
SSy3-PDMS-MPI,, ; were synthesized by using different mixing molar ratio of 4,4'-
methylenebis(phenyl isocyanate) and 3,3'-disulfanediyldipropanoyl chloride according
to the same procedure as that used for SS, ;-PDMS-MPI, 4. 'H NMR (400 MHz, CDCl;,
d) for SS(,-PDMS-MPljs: 7.17 (s), 7.02-7.11 (m), 6.83-6.95 (m), 6.74 (s), 3.82-3.93
(m), 2.52-2.57 (m), 0.05 (b). Molecular weight according to GPC: Mw = 71,724; Mn =
33,881 (b =2.21). '"H NMR (400 MHz, CDCl;, 8) for SSy;-PDMS-MPI ;: 7.20 (s),
7.02-7.11 (m), 6.84-6.99 (m), 6.77 (s), 3.79-3.88 (m), 2.52-2.60 (m), 0.05 (b).

Molecular weight according to GPC: Mw = 72,120; Mn = 36,533 (b = 1.97).
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Fig. S2. 'H NMR spectrum of PDMS-MPI in CDCl; at room temperature.
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Fig. S3. '"H NMR spectrum of SS ;-PDMS-MPI, 4 in CDCls.
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Fig. S4. '"H NMR spectrum of SS,,-PDMS-MPI, g in CDCls.
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Fig. Ss. 'H NMR spectrum of SSO.3-PDMS-MPIO.7 n CDC13



——SS, ,-PDMS-MPI, |
——SS, -PDMS-MPI, _
——SS, ,-PDMS-MPI,
—— PDMS-MPI

Aromatic ring

Carbonyl Disulfide bond

Intensity (a.u.)

1000 500

3000 2500 2000 1500

-1
Wavenumber (cm™)
Fig. S6. FT-IR spectra of SSy-PDMS-MPI,, (x=0, 0.1, 0.2, 0.3).
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Fig. S7. Raman spectra of SS; ;-PDMS-MP]I, o to demonstrate the changes of hydrogen

bonds and (g) disulfide bonds under different strains.
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Fig. S8. Differential scanning calorimetry (DSC) thermal analysis of PDMS-MPI,

SSO.l-PDMS-MPIO.g, SSO.z—PDMS—MPIO,g, and SSO.3-PDMS—MPIO,7,
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Fig. S9. The maximum strain at break of STAR and other recently reported self-healing

PDMS-based polymer

PDMS-based polymers.
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Fig. S10. (a) Stress-strain curves of STAR under different heating temperature for 10

min. (b) The healing efficiency of STAR under different heating temperature.
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Fig. S11. Optimized configuration of bimolecular “SS” (A-A) and bimolecular “MPI”

(B-B) fragments at 25 °C and 50 °C.



At 25 °C: Ex = gptE=Sum of electronic and thermal energies = -1449.11843 Ha
Ea.a = &ytE:= Sum of electronic and thermal Energies=-2898.241993 Ha

The energy of S-S bonds: AEs=E;5-2E,=-3.22 kcal/mol

At 50 °C: Ep = gytE=Sum of electronic and thermal energies =-1449.115815 Ha
Ea-a= €9tE= Sum of electronic and thermal Energies=-2898.236123 Ha

The energy of S-S bonds: AEs=E;4-2Ex= -2.82 kcal/mol

At 25 °C: Eg = g¢+E,; = Sum of electronic and thermal energies = -1028.981478 Ha
Eg.g = g¢tE= Sum of electronic and thermal Energies=-2057.988227 Ha
AEg=E,5-2Eg= -15.86 kcal/mol

At 50 °C: Eg = g¢+E,; = Sum of electronic and thermal energies = -1028.978006 Ha
Eg.g = g¢tE= Sum of electronic and thermal Energies=-2057.98112 Ha

AEp=E,p-2Eg=-15.75550602 kcal/mol
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Fig. S12. Adhesion force-displacement curves of PDMS, PDMS-MPI, and STAR on

(a) glass, (b) copper, and (c) pig skin.
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Fig. S13. AFM adhesion force images: (a) PDMS-MPI, (b) SSy ;-PDMS-MPI .
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Fig. S14. SEM images of (a) STAR electrode and (b) healed STAR electrode. The

yellow arrows mark the crack area.
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Fig. S15. The resistance of a STAR electrode as a function of time before cutting (0

min) and during the healing process at 50 °C.

Fig. S16. SEM images of the cross-section view to investigate the thickness of (a)

STAR electrode, (b) healed STAR electrode and (c) AgNWs conductor.
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Fig. S17. Photos of in vivo experiments performed in mice: Groupl(control group),
Group2 (The wounded area was covered by STAR), and Group3 (The wounded area

was covered by STAR electrodes).
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Fig. S18. Fluorescent images of CCC-HPF1 fibroblasts cells: (a) with STAR electrodes,

(b) control (the environment in which cells grow under the best conditions).



Fig. S19. Infrared images of the STAR electrodes and commercial electrodes on a

volunteer’s forearm.



