Electronic Supplementary Information

A lamellibranchia-inspired epidermal electrode for

electrophysiology

Guo Ye,^a Jiakang Qiu,^a Xiaoyu Fang,^a Tianhao Yu,^b Yayan Xie,^c Yan Zhao,^a Dongpeng Yan,^a Chengzhi He,^{*c} and Nan Liu^{*a}

^a Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
^b Beijing Graphene Institute, Beijing 100094, P. R.China
^c Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China

E-mail: nanliu@bnu.edu.cn; czhe@mail.buct.edu.cn

Fig. S1. Synthetic route of SS_x -PDMS-MPI_{1-x}.

Synthesis of PDMS-MPI. Bis(3-aminopropyl)-terminated poly(dimethylsiloxane) (H₂N-PDMS-NH₂, $M_n = 5000-7000$, 20.0 g, ~1eq) and triethylamine (2 mL) were stirred in anhydrous chloroform (100 mL) at 0 °C under nitrogen atmosphere for 1 h. Subsequently, a solution of 4,4'-methylenebis(phenyl isocyanate) (1.0 g, 1eq) in anhydrous chloroform (30 mL) was added dropwise for 30min. The resulting mixture was stirred at room temperature for 3 days followed by evaporating the solvent to form viscous liquid. Then methanol (30 mL) was poured into it to form precipitate-like viscous liquid. The upper clear solution was decanted after settled for 30 minutes. The precipitate-like liquid was dissolved in chloroform and washed with methanol (30 mL) for 3 times to obtain purified PDMS-MPI. ¹H NMR (400 MHz, CDCl₃, δ): 7.16-7.19 (m), 6.91-7.06 (m), 6.68-6.89 (m), 3.80-3.89 (m), 0.04 (b). Molecular weight according to GPC: Mw = 81,893; Mn = 48,921 (Đ = 1.67).

Synthesis of SS_{0,1}-**PDMS-MPI**_{0,9}. 3,3'-disulfanediyldipropanoic acid (1.0 g) was stirred in thionyl chloride (60 mL) at room temperature for 4 h. The white suspension gradually turned into a light yellow solution. Then the solvent was evaporated under vacuum to obtain yellow liquid 3,3'-disulfanediyldipropanoyl chloride (1.1 g). Secondly, H₂N-PDMS-NH₂ (20.0 g, ~1eq) and triethylamine (2 mL) were stirred in

anhydrous CHCl₃ (100 mL) at 0 °C under nitrogen atmosphere for 1 h. Subsequently, a solution of 4,4'-methylenebis(phenyl isocyanate) (0.9 g, ~0.9 eq) in anhydrous chloroform was added dropwise for 30 min. The mixture was then allowed to stir at room temperature for 1 days. After that, a solution of 3,3'-disulfanediyldipropanoyl chloride (0.1 g, ~0.1 eq) was added dropwise. The mixture was again stirred at room temperature for 3 days. The same purified procedure as PDMS-MPI was used to obtain purified SS_{0.1}-PDMS-MPI_{0.9}. ¹H NMR (400 MHz, CDCl₃, δ): 7.15 (s), 7.03-7.12 (m), 6.81-6.93 (m), 6.70 (s), 3.81-3.93 (m), 2.51-2.58 (m), 0.05 (b). Molecular weight according to GPC: Mw = 94,987; Mn = 49,580 (Đ = 1.92).

Synthesis of SS_{0.2}-PDMS-MPI_{0.8} and SS_{0.3}-PDMS-MPI_{0.7}. SS_{0.2}-PDMS-MPI_{0.8} and SS_{0.3}-PDMS-MPI_{0.7} were synthesized by using different mixing molar ratio of 4,4'- methylenebis(phenyl isocyanate) and 3,3'-disulfanediyldipropanoyl chloride according to the same procedure as that used for SS_{0.1}-PDMS-MPI_{0.9}. ¹H NMR (400 MHz, CDCl₃, δ) for SS_{0.2}-PDMS-MPI_{0.8}: 7.17 (s), 7.02-7.11 (m), 6.83-6.95 (m), 6.74 (s), 3.82-3.93 (m), 2.52-2.57 (m), 0.05 (b). Molecular weight according to GPC: Mw = 71,724; Mn = 33,881 (Φ = 2.21). ¹H NMR (400 MHz, CDCl₃, δ) for SS_{0.3}-PDMS-MPI_{0.7}: 7.20 (s), 7.02-7.11 (m), 6.84-6.99 (m), 6.77 (s), 3.79-3.88 (m), 2.52-2.60 (m), 0.05 (b). Molecular weight according to GPC: Mn = 36,533 (Φ = 1.97).

Fig. S2. ¹H NMR spectrum of PDMS-MPI in CDCl₃ at room temperature.

Fig. S3. ¹H NMR spectrum of $SS_{0.1}$ -PDMS-MPI_{0.9} in CDCl₃.

Fig. S4. ¹H NMR spectrum of $SS_{0.2}$ -PDMS-MPI_{0.8} in CDCl₃.

Fig. S5. ¹H NMR spectrum of SS_{0.3}-PDMS-MPI_{0.7} in CDCl₃.

Fig. S6. FT-IR spectra of SS_x-PDMS-MPI_{1-x} (x=0, 0.1, 0.2, 0.3).

Fig. S7. Raman spectra of $SS_{0,1}$ -PDMS-MPI_{0.9} to demonstrate the changes of hydrogen

bonds and (g) disulfide bonds under different strains.

Fig. S8. Differential scanning calorimetry (DSC) thermal analysis of PDMS-MPI,

SS_{0.1}-PDMS-MPI_{0.9}, SS_{0.2}-PDMS-MPI_{0.8}, and SS_{0.3}-PDMS-MPI_{0.7}.

Fig. S9. The maximum strain at break of STAR and other recently reported self-healing

PDMS-based polymers.

Fig. S10. (a) Stress-strain curves of STAR under different heating temperature for 10 min. (b) The healing efficiency of STAR under different heating temperature.

Fig. S11. Optimized configuration of bimolecular "SS" (A-A) and bimolecular "MPI"

(B-B) fragments at 25 °C and 50 °C.

At 25 °C: $E_A = \varepsilon_0 + E_{tot} =$ Sum of electronic and thermal energies = -1449.11843 Ha $E_{A-A} = \varepsilon_0 + E_{tot} =$ Sum of electronic and thermal Energies= -2898.241993 Ha The energy of S-S bonds: $\Delta E_S = E_{2A} - 2E_A = -3.22$ kcal/mol

At 50 °C: $E_A = \varepsilon_0 + E_{tot} =$ Sum of electronic and thermal energies = -1449.115815 Ha

 $E_{A-A} = \epsilon_0 + E_{tot} =$ Sum of electronic and thermal Energies= -2898.236123 Ha

The energy of S-S bonds: $\Delta E_S = E_{2A} - 2E_A = -2.82$ kcal/mol

At 25 °C: $E_B = \varepsilon_0 + E_{tot} =$ Sum of electronic and thermal energies = -1028.981478 Ha

 $E_{B-B} = \varepsilon_0 + E_{tot} = Sum \text{ of electronic and thermal Energies} = -2057.988227 \text{ Ha}$

 $\Delta E_{H} = E_{2B} - 2E_{B} = -15.86 \text{ kcal/mol}$

At 50 °C: $E_B = \epsilon_0 + E_{tot} =$ Sum of electronic and thermal energies = -1028.978006 Ha

 $E_{B-B} = \epsilon_0 + E_{tot} = Sum \text{ of electronic and thermal Energies} = -2057.98112 \text{ Ha}$

 $\Delta E_{H} = E_{2B} - 2E_{B} = -15.75550602 \text{ kcal/mol}$

Fig. S12. Adhesion force-displacement curves of PDMS, PDMS-MPI, and STAR on (a) glass, (b) copper, and (c) pig skin.

Fig. S13. AFM adhesion force images: (a) PDMS-MPI, (b) $SS_{0.1}$ -PDMS-MPI_{0.9}.

Fig. S14. SEM images of (a) STAR electrode and (b) healed STAR electrode. The yellow arrows mark the crack area.

Fig. S15. The resistance of a STAR electrode as a function of time before cutting (0 min) and during the healing process at 50 °C.

Fig. S16. SEM images of the cross-section view to investigate the thickness of (a) STAR electrode, (b) healed STAR electrode and (c) AgNWs conductor.

Fig. S17. Photos of in vivo experiments performed in mice: Group1(control group), Group2 (The wounded area was covered by STAR), and Group3 (The wounded area was covered by STAR electrodes).

Fig. S18. Fluorescent images of CCC-HPF1 fibroblasts cells: (a) with STAR electrodes,(b) control (the environment in which cells grow under the best conditions).

Fig. S19. Infrared images of the STAR electrodes and commercial electrodes on a volunteer's forearm.