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Fig. S1 Schematic diagram of the transition mechanism of OTS devices.

Distribution of electrons (a) before, and (b) after voltage is applied. In the absence of

an imposed electric field, the trap states below the Fermi level are occupied while

those above it are not. By applying the voltage, the energy band gets bent and the

Poole-Frenkel conduction model now describes the I-V characteristics (c) at small

voltage and (d) at large voltage.1 While staying within the deep trap states below the

Fermi level under small voltage, the electrons would jump between the traps, allowing

those empty shallow trap states at higher energies to be accessed through thermal

emission or tunneling processes. The kinetic energy gained by one electron under the

high electric field can be shared among a larger number of excited electrons. Thus a

large electric field can lead to a non-equilibrium distribution of carriers and

non-uniform electric field distribution along the film, which allows for the abrupt

conductivity switching.



Fig. S2 Schematic diagram of the transition mechanism of VO2 devices. (a) The

electrical resistance of the VO2 device versus temperature and the structural transition

in VO2.2 Under applied electric field or high temperature, the VO2 crystal could be

transformed from a monoclinic structure to a rutile structure. (b) Threshold switching

in VO2 devices. The electrical conductivity of two types of crystal structure known as

monoclinic and rutile is quite different. Upon the transition of partial VO2 from

monoclinic to rutile, a high conductance channel is formed between the top and

bottom electrodes, resulting in the switching from high-resistance state (HRS) to

low-resistance state (LRS). By removing the applied electric field, VO2 relaxes to its

original monoclinic state, thus returning to the HRS.



Fig. S3 Stochastic threshold switching behavior observed in TSM devices.

Consecutive DC switching cycles of the TSM devices under current compliance

measured in (a) GeTe6 (OTS), (b) VO2 (MIT).



Fig. S4 Electric potential normalized by thermal energy used for the particle

simulation. It is composed by two types of energy with quite different scales. One is

the interfacial energy responsible for detaching the CuS layer and the other is the

much weaker nanoparticle-pinning energy with many smaller wells between the

electrodes.



Fig. S5 Electrical characteristics of CuS/GeSe-based CBTS with series resistors.

(a) 100 Consecutive DC switching cycles of the CuS/GeSe device connected to a 40

kΩ series resistor. The cycle to cycle variation of the threshold voltage Vth shows

favorable stochasticity for fabricating the demanded neurons without compliance

currents. (b) The measured Ron of the CuS/GeSe device connected in series with a

resistor Rs with various amounts of resistance.



Fig. S6 Stochastic neuron test platform. The neuron circuit test platform is built on

a breadboard, where TSM devices are accessed through a probe station and the

voltage changes inside the circuit are monitored by an oscilloscope.



Fig. S7 The training process of probabilistic SNN. (a) Prediction accuracy during

training epoch. The highest accuracy of probabilistic SNN neural network is 97.0%.

(b) The change of sum of (Δw)2 during training epochs. The synaptic weight tuning of

the network becomes convergent after 10 training epochs.



Fig. S8 Comparison of Probabilistic SNN and EM(Expectation-Maximum)

algorithm recognition results. Confusion matrixes of prediction results of 300 test

breast cancer data by (a) Expectation-Maximum (EM) algorithm (b) probabilistic

spiking neural network (PSNN) and (c) artificial neural network (ANN). (d) Decision

boundary (red line) and classification result of logistic regression after PCA analysis.

The ANN and logistic regression are supervised learning, while the probabilistic SNN

and EM algorithm are unsupervised learning. The probabilistic SNN here achieves

accuracy of 97.0% comparing to 91.3% by the EM algorithm, 97.3% by the ANN and

97.6% by logistic regression after PCA.



TABLE Ⅰ

Reference Device type
Reset

Circuit
Stochastic Application

3 CMOS Yes No Not referred

4 PCM Yes Yes
Temporal correlations

detection

5 RRAM Yes Yes MNIST

6 FEFET Yes No MNIST

7 MTJ Yes Yes MNIST

8 TSM (VO2) No Yes MNIST

9
TSM

(Ag/SiO2/Au)
No

Not

referred
MNIST

10 TSM (VO2) No Yes Not referred

Our work TSM (CuS/GeSe) No Yes
Probabilistic computation

(Cancer diagnosis)

Table S1 | Summary of artificial neurons based on various technology choices.



TABLE Ⅱ

Types of CBTS MIT OTS CBTS

Material VO2 GeTe CuS/GeSe

On-off ratio >102 >102 >109

Roff ~500 kΩ ~1 MΩ ~1 GΩ

Leakage current ~10-6A ~10-8A ~10-12A

Vth range 0.4 V~1.1 V 1.2 V~1.3 V 0.3 V~0.7 V

Vhold range 0.1 V~0.3 V 0.5 V~0.7 V 0 V~0.2 V

Standard deviation

of Vth

0.156 V 0.020 V 0.076 V

Table S2 | Comparison of three types of TSM devices electrical parameters. The

same via-hole structures with diameter 250 nm and depth 100 nm have been used for

three types of CBTS devices in order to quantitatively evaluate and compare their

performance.



TABLEⅢ

Simulation parameters of probabilistic SNN Symbol Simulation value

Time step of simulation α 0.1ms

Potentiation factor of STDP c 0.05

Depression factor of STDP b 0.001

Time window of STDP σ 50ms

Maximum weight wmax 2

Minimum weight wmin 0

Input spiking rate v 40Hz

Input time duration of each data - 50ms

Firing probability Pf (u)
exp �Ǥ�Ͳ � � Ǥ �Ǥ�ͺ��

��Ǥ͵�͵͵

Table S3 | Simulation parameters of probabilistic SNN for cancer diagnosis. The

input is encoded as that given fi = j (1≤j≤10), the input neuron Xij will fire with a

spiking rate νij = 40Hz, while the rest of the population remain silent (Xij’=0 if j’≠j).

The output neurons response is calculated using the experimentally measured

dependence of the firing probability on the membrane potential uk(t), and Pf

(u)= exp �Ǥ�Ͳ � � Ǥ �Ǥ�ͺ�� ��Ǥ͵�͵͵.
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