Electronic Supplementary Information

Catalysts	Electrolyte	Specific activity (mA cm ⁻²)	Mass activity (A mg ⁻¹)	Ref.
Core-shell Au-Pt nanodendrites	0.5 M H ₂ SO ₄ + 1 M CH ₃ OH	1.28	0.45	1
Au ₂ Pt ₁ /C			0.75	
Au_1Pt_1/C	$0.1 \text{ M HCIO}_4 + 1 \text{ M CH}_2 \text{OH}$		0.71	2
Au_1Pt_2/C	T WI CHIJOH		0.58	
AuPt nanotubes		0.9	1.84	
Au ₄ Pt ₅ nanotubes	$0.5 \text{ M H}_2\text{SO}_4 + 0.5 \text{ M CH}_2\text{OH}$	0.84	1.66	3
Au ₃ Pt ₅ nanotubes	0.5 W CH3011	0.82	1.57	
AuPt bipyramid nanoframes	0.5 M KOH + 0.5 M CH ₃ OH		0.99	4
dandelion-like Au@Pd/rGO	0.5 M KOH + 1 M CH ₃ OH	2.16	0.87	5
PdAu-P ternary alloy	0.1 M KOH + 0.5 M CH ₃ OH	1.06	0.49	6
Au@Ni-rGO nanocomposites	0.5 M KOH + 0.5 M CH ₃ OH		1.447	7
Au@Ni@PtNiAu sandwich nanocrystals	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	2.05	0.346	8
hollow AuAg nanourchins	0.5 M KOH+2 M CH ₃ OH		0.0139	9

 Table S1. Comparison of MOR activity of some recently reported Au-based electrocatalysts.

Table S2. Comparison of various Au-based catalysts towards EOR.

Catalysts	Electrolyte	Specific activity (mA cm ⁻²)	Mass activity (A mg ⁻¹)	Ref.
Au@Pt nanocrystalsstar-likeAu@Pt nanoprismstriangular	0.5 M KOH + 0.5 M C ₂ H ₅ OH	13.34 ~7.58	7.03 ~2.78	10
Zigzag PtAu alloy surface on Au nanopentagrams	1 M KOH + 1 M C ₂ H ₅ OH	8.3	4.4	11
Porous PtAu alloyed nanoflowers	1 M KOH + 0.5 M C ₂ H ₅ OH	7.06	0.951	12
$\begin{array}{l} Pt_{10}Au_{10}Cu_{80}/C\\ Pt_{20}Au_{20}Cu_{60}/C\\ Pt_{30}Au_{30}Cu_{40}/C \end{array}$	0.5 M H ₂ SO ₄ + 0.5 M C ₂ H ₅ OH		0.452 0.346 0.193	13
Nanoporous Au Poly-Au electrode	1 M KOH + 1 M C ₂ H ₅ OH		0.308 0.022	14
Au-P/C Au/C	0.5 M KOH + 1 M C ₂ H ₅ OH	3.53 1.34	0.642 0.082	15
Au@Pd core-shell nanorods	1 M KOH + 1 M C ₂ H ₅ OH		2.92	16
Hexoctahedral-shaped Au@AuPd NPs		9.5	11.9	
Elongated tetrahexahedral-shaped Au@AuPd NPs	0.5 M KOH + 0.5 M C ₂ H ₅ OH	9.0	9.7	17
Octahedral-shaped Au@AuPd NPs		6.8	7.1	
Au@PdNi core-shell NPs	1 M KOH + 1 M C ₂ H ₅ OH	11.8	5.891	18
Au@PdAgNSs/rGO Au@PdAgNSs	1 M KOH + 1 M C ₂ H ₅ OH	6.39 2.43		19

Catalysta	Flootvolvto	Specific activity	Mass activity	Dof
	Electrolyte	(mA cm ⁻²)	(A mg ⁻¹)	Kel.
Nanoporous Au _{99.5} Pt _{0.5}		10.22	7.01	
Nanoporous Au99Pt1	0.5 M H ₂ SO ₄ +	7.82	5.92	20
Nanoporous Au98Pt2	0.5 M HCOOH	6.09	4.51	20
Nanoporous Au95Pt5		2.57	4.95	
PtAu/N-graphene	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	14.95	1.847	21
PtAu alloy nanotubes	0.5 M H ₂ SO ₄ + 0.5 M HCOOH		1.445	22
Dendritic core-shell Au ₇₉ @Pd ₂₁		1.897	0.835	
Dendritic core-shell Au ₇₁ @Pd ₂₉	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	2.167	1.405	23
Dendritic core-shell Au ₅₆ @Pd ₄₄		2.333	1.160	
Flower-like Au@AuPd NPs	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	1.99	1.25	24
Sandwich-structured Au@polyallylamine@Pd	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	10.7		25
Ru@Au ₅ Pt ₅ core-shell NPs	0.5 M HClO ₄ + 0.5 M HCOOH	4.14	1.2	26
Surface copper removed CuAuPd/C	0.5 M H ₂ SO ₄ + 0.5 M HCOOH		1.07	27
Au ₆ Pt ₁ Rh _{0.5} nanowires/C	0.5 M H ₂ SO ₄ + 0.5 M HCOOH	14.3	8.05	28

Table S3. Comparison of FAOR activity of some recently reported Au-based electrocatalysts.

Catalysts	Electrolyte	<i>E</i> _{1/2} (V vs. RHE)	Specific activity at 0.9 V (mA cm ⁻²)	Mass activity at 0.9 V (A mg ⁻ ¹)	Ref.
Pt monolayer on nanoporous Au	0.1 M HClO ₄		0.89	1.57	29
Pt ₁ Au ₁ nanowires		0.705	0.013	0.008	
$Pt_1Au_1/(TiO_2)_{0.5}$ nanowires	0.1 M	0.889	0.448	0.304	
$Pt_1Au_1/(TiO_2)_1$ nanowires	HClO ₄	0.889	0.441	0.381	30
Pt ₁ Au ₁ /(TiO ₂) ₂ nanowires		0.740	0.071	0.037	
Au-PtFe/C annealed at high temperature	0.1 M HClO ₄	0.926		0.66	31
AuPt flower like- assembly nanochains		0.87	0.43	0.155	20
AuPd flower like- assembly nanochains	0.1 M KOH		0.48	0.142	32
PdAu NPs on graphene oxide	0.1 M KOH	0.9	1.577	0.526	33
Au nanowires @Pd- polyethylenimine nanohybrids	0.1 M KOH	0.9		0.295	34
Dealloyed AuNi nanodendrites	0.1 M KOH	0.911	0.11	0.09 (at 0.85 V)	35
AuCu aerogels	0.1 M KOH	0.868	0.906 (at 0.85 V)	0.96 (at 0.85 V)	36
Self-supported AuCuCo NPs	0.1 M KOH	0.824		0.443 (at 0.8 V)	37

Table S4. Comparison of ORR performance of various Au-based electrocatalysts.

Table S5. Comparison of various Au-based electrocatalysts for HER.

Catalysts	Electrolyte	Overpotential at 10 mAcm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
AuPt alloy nanodendrites / reduced graphene oxide	0.5 M H ₂ SO ₄	48	34	38
Cathodically activated Au/TiO2 nanocomposite	$0.5 \text{ M H}_2 \text{SO}_4$	38	35	39
Au aerogel / graphitic carbon nitride	0.5 M H ₂ SO ₄	185	53	40
Au NPs@citrate	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	270	74	41
Flower-like Au@AuPd nanocrystals	0.5 M H ₂ SO ₄	55	34	24
Au ₇₅ Rh ₂₅ core-shell star- shaped decahedra	0.5 M U SO	64.1	33.8	40
Au ₆₈ Rh ₃₂ core-shell star- shaped decahedra	$0.5 \text{ M} \text{ H}_2 \text{ S} \text{ O}_4$	77.4	38.9	42
AuCu NPs/carbon nanofibers	$0.5 \text{ M H}_2 \text{SO}_4$	83	70	43
MoS ₂ –Au nanohybrids	0.5 M H ₂ SO ₄	66	40	44
AuNi heterodimers	1 M KOH	97	67.5	45

Catalysts	Electrolyte	Overpotential at 10 mAcm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Au/Ir nanochains	1 M KOH	300	52.94	46
Au@CoFeO _x core-shell NPs	1 M KOH	328 ± 3	58	47
Self-supported AuCuCo NPs	0.1 M KOH	596	160	37
Au–Fe nanoalloys	1 M KOH	800	163	48
Carbon supported AuIr	0.1 M NaOH	~394		49
NiCeO _x -Au catalyst	1 M NaOH	271		50
AuNi heterodimers	1 M KOH	350	45.9	45
Au/NiCo2O4 nanoarrays	1 M KOH	360	63	51
Au-Ni ₁₂ P ₅ core/shell NPs	1 M KOH	340	49	52
Nanoporous Au/CoMoN _x		230	46	
Nanoporous Au/CoMoO ₄	1 M KOH	270	65	53
Nanoporous Au/CoN _x		310	68	

Table S6. Comparison of OER activity of some recently reported Au-based electrocatalysts.

Catalysts	Electrolyt e	Potential (V vs. RHE)	CO Faradaic efficiency	CO partial current density (mA cm ⁻²)	Ref.
Nano-folded Au catalysts	0.1 M KHCO ₃	-0.5	87.4%	2.4	54
Nanoporous Au	0.1 M NaHCO ₃	-0.6	95.9%		55
Nanoporous Au leaf	0.5 M KHCO ₃	-0.57	90%	1.8	56
Au NPs embedded in graphene nanoribbon	0.5 M KHCO ₃	-0.66	92%		57
Au NPs/ reduced graphene oxide Oleylamine modified Au NPs/ reduced graphene oxide	0.1 M KHCO ₃	-0.7	52% 75%		58
Au-Fe core-shell NPs	0.5 M KHCO ₃	-0.4	97.6%	11.05	59
Core-shell nanoporous AuCu ₃ @Au	0.1 M KHCO ₃	-0.6	97.27%	5.3	60
Annealed Au-urea/C Annealed Au-sodium sulfide/C	0.1 M KHCO ₃	-0.68	94.2% 91.8%	9.4 (at -0.96 V) 7.8 (at -0.96 V)	61
Nanoporous Au ₃ Cu	0.1 M KHCO ₃	-0.7	98.12%	12.77	62

Table S7. Comparison of various Au-based electrocatalysts for CO₂ reduction to CO.

References

- 1. Y. Li, W. Ding, M. Li, H. Xia, D. Wang and X. Tao, J. Mater. Chem. A, 2015, 3, 368-376.
- L. Lu, Y. Nie, Y. Wang, G. Wu, L. Li, J. Li, X. Qi and Z. Wei, J. Mater. Chem. A, 2018, 6, 104-109.
- 3. C. Lu, W. Kong, H. Zhang, B. Song and Z. Wang, J. Power Sources, 2015, 296, 102-108.
- C. Fang, G. Zhao, Z. Zhang, Q. Ding, N. Yu, Z. Cui and T. Bi, *Chem. Eur. J.*, 2019, 25, 7351-7358.
- L.-L. He, P. Song, J.-J. Feng, R. Fang, D.-X. Yu, J.-R. Chen and A.-J. Wang, *Electrochim. Acta*, 2016, 200, 204-213.
- T. Li, Y. Wang, Y. Tang, L. Xu, L. Si, G. Fu, D. Sun and Y. Tang, *Catal. Sci. Technol.*, 2017, 7, 3355-3360.
- 7. Y. Zhang, Y. Song, J. Zhao, S. Li and Y. Li, J. Alloys Compd., 2020, 822, 153322.
- T.-W. Chen, W.-F. Huang, J.-X. Kang, D.-F. Zhang and L. Guo, *Nano Energy*, 2018, 52, 22-28.
- L. Yu, L. Zhang, X. Zhang, G. Dai, J. Zhang, X. Wang and H. You, ACS Appl. Energy Mater., 2019, 3, 723-732.
- 10. Y. Peng, L. Li, R. Tao, L. Tan, M. Qiu and L. Guo, Nano Res., 2018, 11, 3222-3232.
- C. Du, X. Gao, Z. Zhuang, C. Cheng, F. Zheng, X. Li and W. Chen, *Electrochim. Acta*, 2017, 238, 263-268.
- P. Song, L.-P. Mei, A.-J. Wang, K.-M. Fang and J.-J. Feng, *Int. J. Hydrogen Energ.*, 2016, 41, 1645-1653.
- M. Wang, Y. He, R. Li, Z. Ma, Z. Zhang and X. Wang, *Electrochim. Acta*, 2015, **178**, 259-269.

- A. Zhang, Y. Chen, Z. Yang, S. Ma, Y. Huang, G. Richter, P. Schützendübe, C. Zhong and Z. Wang, ACS Appl. Energy Mater., 2019, 3, 336-343.
- T. Li, G. Fu, J. Su, Y. Wang, Y. Lv, X. Zou, X. Zhu, L. Xu, D. Sun and Y. Tang, *Electrochim. Acta*, 2017, 231, 13-19.
- Y. Chen, Z. Fan, Z. Luo, X. Liu, Z. Lai, B. Li, Y. Zong, L. Gu and H. Zhang, *Adv. Mater.*, 2017, 29, 1701331.
- C. Bi, Y. Song, H. He, C. Wu, W. Du, L. Huang, H. Moehwald and H. Xia, *J. Mater. Chem. A*, 2018, 6, 7675-7685.
- N. Sui, T. Wang, Q. Bai, R. Yue, H. Jiang, H. Xiao, M. Liu, L. Wang, Z. Zhu and W. W. Yu, J. Alloys Compd., 2020, 817, 153335.
- E. Wu, Q. Zhang, A. Xie, W. Yang, C. Peng, J. Hou, Y. He, B. Zhang and L. Deng, *J. Alloys Compd.*, 2019, **789**, 174-182.
- 20. D. Li, F. Meng, H. Wang, X. Jiang and Y. Zhu, *Electrochim. Acta*, 2016, 190, 852-861.
- H. Xu, B. Yan, S. Li, J. Wang, C. Wang, J. Guo and Y. Du, *Chem. Eng. J.*, 2018, **334**, 2638-2646.
- Y. Kim, H. J. Kim, Y. S. Kim, S. M. Choi, M. H. Seo and W. B. Kim, *J. Phys. Chem. C*, 2012, 116, 18093-18100.
- 23. L. Yang, G. Li, J. Chang, J. Ge, C. Liu, F. Vladimir, G. Wang, Z. Jin and W. Xing, *Appl. Catal. B: Environ.*, 2020, **260**, 118200.
- D.-N. Li, A.-J. Wang, J. Wei, Q.-L. Zhang and J.-J. Feng, Int. J. Hydrogen Energ., 2017, 42, 19894-19902.
- 25. F.-M. Li, Y.-Q. Kang, R.-L. Peng, S.-N. Li, B.-Y. Xia, Z.-H. Liu and Y. Chen, J. Mater. Chem. A, 2016, 4, 12020-12024.

- 26. X. Hu, J. Zou, H. Gao and X. Kang, J. Colloid Interface Sci., 2020, 570, 72-79.
- 27. H. Mao, T. Huang and A. Yu, Int. J. Hydrogen Energ., 2016, 41, 13190-13196.
- F. Li, Y. Ding, X. Xiao, S. Yin, M. Hu, S. Li and Y. Chen, J. Mater. Chem. A, 2018, 6, 17164-17170.
- 29. Y. Zhao, W. Zhang, H. Yin, J. He and Y. Ding, *Electrochim. Acta*, 2018, 274, 9-15.
- X. Deng, S. Yin, X. Wu, M. Sun, Z. Xie and Q. Huang, *Electrochim. Acta*, 2018, 283, 987-996.
- H. Zhu, Y. Cai, F. Wang, P. Gao and J. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 22156-22166.
- 32. L.-L. He, P. Song, A.-J. Wang, J.-N. Zheng, L.-P. Mei and J.-J. Feng, *J. Mater. Chem. A*, 2015, **3**, 5352-5359.
- W. Zhu, H. Yuan, F. Liao, Y. Shen, H. Shi, Y. Shi, L. Xu, M. Ma and M. Shao, *Chem. Eng. J.*, 2020, 389, 124240.
- 34. Q. Xue, J. Bai, C. Han, P. Chen, J.-X. Jiang and Y. Chen, ACS Catal., 2018, 8, 11287-11295.
- 35. J. Wang, F. Chen, Y. Jin, Y. Lei and R. L. Johnston, Adv. Funct. Mater., 2017, 27, 1700260.
- 36. J. Wang, F. Chen, Y. Jin and R. L. Johnston, ChemSusChem, 2018, 11, 1354-1364.
- 37. H. Gong, W. Zhang, F. Li and R. Yang, *Electrochim. Acta*, 2017, 252, 261-267.
- J.-J. Feng, L.-X. Chen, X. Ma, J. Yuan, J.-R. Chen, A.-J. Wang and Q.-Q. Xu, *Int. J. Hydrogen Energ.*, 2017, 42, 1120-1129.
- A. Mezni, M. M. Ibrahim, M. El-Kemary, A. A. Shaltout, N. Y. Mostafa, J. Ryl, T. Kumeria,
 T. Altalhi and M. A. Amin, *Electrochim. Acta*, 2018, **290**, 404-418.
- 40. M. K. Kundu, T. Bhowmik and S. Barman, J. Mater. Chem. A, 2015, 3, 23120-23135.
- 41. D. Alba-Molina, A. R. Puente Santiago, J. J. Giner-Casares, E. Rodríguez-Castellón, M. T.

Martín-Romero, L. Camacho, R. Luque and M. Cano, J. Mater. Chem. A, 2019, 7, 20425-20434.

- T. Bian, B. Xiao, B. Sun, L. Huang, S. Su, Y. Jiang, J. Xiao, A. Yuan, H. Zhang and D. Yang, *Appl. Catal. B: Environ.*, 2020, 263, 118255.
- J. Wang, H. Zhu, D. Yu, J. Chen, J. Chen, M. Zhang, L. Wang and M. Du, ACS Appl. Mater. Interfaces, 2017, 9, 19756-19765.
- J. Zhang, T. Wang, L. Liu, K. Du, W. Liu, Z. Zhu and M. Li, J. Mater. Chem. A, 2017, 5, 4122-4128.
- B. Ni, P. He, W. Liao, S. Chen, L. Gu, Y. Gong, K. Wang, J. Zhuang, L. Song, G. Zhou and X. Wang, *Small*, 2018, 14, 1703749.
- 46. Z. Ke, L. Li, Q. Jia, Y. Yang and H. Cui, Appl. Surf. Sci., 2019, 463, 58-65.
- 47. A. L. Strickler, M. A. Escudero-Escribano and T. F. Jaramillo, Nano Lett., 2017, 17, 6040-6046.
- 48. I. Vassalini, L. Borgese, M. Mariz, S. Polizzi, G. Aquilanti, P. Ghigna, A. Sartorel, V. Amendola and I. Alessandri, *Angew. Chem. Int. Ed.*, 2017, **56**, 6589-6593.
- 49. L. Yuan, Z. Yan, L. Jiang, E. Wang, S. Wang and G. Sun, J. Energ. Chem., 2016, 25, 805-810.
- J. W. D. Ng, M. García-Melchor, M. Bajdich, P. Chakthranont, C. Kirk, A. Vojvodic and T. F. Jaramillo, *Nat. Energy*, 2016, 1, 16053.
- 51. X. Liu, J. Liu, Y. Li, Y. Li and X. Sun, ChemCatChem, 2014, 6, 2501-2506.
- Y. Xu, S. Duan, H. Li, M. Yang, S. Wang, X. Wang and R. Wang, *Nano Res.*, 2017, 10, 3103-3112.
- R. Q. Yao, H. Shi, W. B. Wan, Z. Wen, X. Y. Lang and Q. Jiang, *Adv. Mater.*, 2020, 32, 1907214.

- K. S. Kwok, Y. Wang, M. C. Cao, H. Shen, Z. He, G. Poirier, B. E. McCandless, K. J. Livi, D.
 A. Muller, C. Wang and D. H. Gracias, *Nano Lett.*, 2019, 19, 9154-9159.
- 55. M. N. Hossain, Z. Liu, J. Wen and A. Chen, Appl. Catal. B: Environ., 2018, 236, 483-489.
- X. Wen, L. Chang, Y. Gao, J. Han, Z. Bai, Y. Huan, M. Li, Z. Tang and X. Yan, *Inorg. Chem. Front.*, 2018, 5, 1207-1212.
- 57. C. Rogers, W. S. Perkins, G. Veber, T. E. Williams, R. R. Cloke and F. R. Fischer, J. Am. Chem. Soc., 2017, 139, 4052-4061.
- Y. Zhao, C. Wang, Y. Liu, D. R. MacFarlane and G. G. Wallace, *Adv. Ener. Mater.*, 2018, 8, 1801400.
- K. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A. Goddard,
 3rd and Z. Wang, J. Am. Chem. Soc., 2017, 139, 15608-15611.
- X. Ma, Y. Shen, S. Yao, C. An, W. Zhang, J. Zhu, R. Si, C. Guo and C. An, *J. Mater. Chem.* A, 2020, 8, 3344-3350.
- 61. Y. Zhang, L. Hu and W. Han, J. Mater. Chem. A, 2018, 6, 23610-23620.
- 62. X. Ma, Y. Shen, S. Yao, M. Shu, R. Si and C. An, Chem. Eur. J., 2020, 26, 4143 4149.