Supplementary Information

β-catenin/CBP Inhibition Alters Epidermal Growth Factor Receptor Fucosylation Status in Oral Squamous Cell Carcinoma

Kevin Brown Chandler¹, Khalid Alamoud², Vanessa L Stahl¹, Bach-Cuc Nguyen², Vinay Kartha³, Manish V. Bais², Kenichi Nomoto⁴, Takashi Owa⁴, Stefano Monti³, Maria A Kukuruzinska^{2*}, and Catherine E Costello^{1*}

¹Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, ²Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, ³Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, 02118, and ⁴Eisai Inc., Woodcliff Lake, NJ 07677

*Correspondence to:

Catherine E. Costello Center for Biomedical Mass Spectrometry Boston University School of Medicine 670 Albany St, Rm 511 Boston, MA 02118-2646 USA Ph.: (+1) 617-358-2433 Fax: (+1) 617-358-2416 Email: <u>cecmsms@bu.edu</u>

Maria A. Kukuruzinska Department of Translational Dental Medicine Boston University School of Dental Medicine 700 Albany Street, W201 Boston, MA 02118-2646 USA Ph: (+1) 617-358-9690 Email: <u>mkukuruz@bu.edu</u>

Table of Contents

Supplementary Figure 1: ICG-001 Inhibition Positively Correlates with EGFR Inhibition	3
Supplementary Figure 2: E7386 Inhibition Signature	4
Supplementary Figure 3: A. Transcriptional E7386 Inhibition Signature is Associated with Clinical Outcomes in Primary Human OSCC	5
Supplementary Figure 4: HCD Spectrum of EGFR Site N32 Glycopeptide ³⁰ MFNNCEVVLGNLEITYVQR ⁴⁸ + HexNAc ₄ Hex ₅ Fuc ₁ NeuAc ₁	6
Supplementary Figure 5: HCD Spectrum of EGFR Site N104 Glycopeptide ⁸⁵ GNMYYENSYALAVLSNYDANKTGLKELPMR ¹¹⁴ + HexNAc ₄ Hex ₅ Fuc ₂	7
Supplementary Figure 6: HCD Spectrum of EGFR Site N151 Glycopeptide ¹⁴² DIVSSDFLSNMSMDFQNHLGSCQK ¹⁶⁵ + HexNAc ₄ Hex ₅ Fuc ₁	
Supplementary Figure 7: HCD Spectrum of EGFR Site N172 Glycopeptide ⁶⁶ CDPSCPNGSCWGAGEENCQKLTK ⁸⁸ + HexNAc ₂ Hex ₆	
Supplementary Figure 8: EThcD Spectrum of EGFR Site N328 Glycopeptide ³¹¹ KVCNGIGIGEFKDSLSINATNIKHFK ³³⁶ + HexNAc ₂ Hex ₆	10
Supplementary Figure 9: HCD Spectrum of EGFR Site N337 Glycopeptide ³³⁷ NCTSISGDLHILPVAFR ³⁵³ + HexNAc ₂ Hex ₈	11
Supplementary Figure 10: HCD Spectrum of EGFR Site N389 Glycopeptide ³⁷³ TVKEITGFLLIQAWPENRTDLHAFENLEIIR ⁴⁰³ + HexNAc ₃ Hex ₄ Fuc ₁	12
Supplementary Figure 11: EThcD Spectrum of EGFR Site N420 Glycopeptide ⁴⁰⁶ TKQHGQFSLAVVSLNITSLGLR ⁴²⁷ + HexNAc ₄ Hex ₅ Fuc ₂	13
Supplementary Figure 12: HCD Spectrum of EGFR Site N544 Glycopeptide 524EFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVK569 + HexNAc ₄ Hex ₅ Fuc ₂ NeuAc ₁	14
Supplementary Figure 13: EThcD Spectrum of EGFR Site N579 Glycopeptide ⁵⁷⁰ TCPAGVMGENNTLVWK ⁵⁸⁵ + HexNAc ₄ Hex ₅ Fuc ₁	15
Supplementary Figure 14: HCD Spectrum of EGFR Site N599 Glycopeptide ⁵⁸⁶ YADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPK ⁶¹⁸ + HexNAc ₂ Hex ₇	16
Supplemental Figure 15A: MALDI-TOF MS Spectrum of Released, Permethylated N-Glycans from Indolent CAL27 Cells	17
Supplemental Figure 15B: MALDI-TOF MS Spectrum of Released, Permethylated N-Glycans from Metastatic HSC-3 Cells.	18
Supplemental Figure 15C: MALDI-TOF MS Spectrum of Released, Permethylated N-Glycans from Metastatic HSC-3 Cells Treated with ICG-001.	19
Supplementary Figure 16A-B: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide ⁴⁰⁶ TKQHGQFSLAVVSLNITSLGLR ⁴²⁷ + HexNAc ₄ Hex ₅ Fuc ₁ HCD Spectra	20-21
Supplementary Figure 17A-B: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide ⁴⁰⁶ TKQHGQFSLAVVSLNITSLGLR ⁴²⁷ + HexNAc ₄ Hex ₅ Fuc ₂ HCD Spectra	22-23
Supplementary Figure 18A: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide 406TKQHGQFSLAVVSLNITSLGLR427 + HexNAc ₄ Hex ₅ Fuc ₃ HCD Spectra	24-25

Supplementary Figure 1: ICG-001 Inhibition Positively Correlates with EGFR Inhibition. GSEA enrichment profiles corresponding to ICG-001 inhibition scores in TCGA OSCC data for gene sets pertaining to small-molecule-based EGFR inhibition. Genes that are down-regulated (**A**, left) are enriched towards higher ICG-001 inhibition levels (left; FDR q-value=1.31E-4), while genes that are up-regulated (**B**, right) are enriched towards lower ICG-001 inhibition levels (right; FDR q-value = 0.041), suggesting ICG-001 inhibition is positively correlates with EGFR inhibition in OSCC. A strong positive correlation between ICG-001 inhibition (in TCGA OSCCs) and EGFR inhibition is observed, suggesting that ICG-001 inhibits genes involved in EGFR signaling in primary oral cancer tumor tissues.

Α.

Supplementary Figure 2: E7386 Inhibition Signature. A. Heatmap of microarray gene expression treatment signatures derived from metastatic HSC-3 and non-metastatic CAL27 cells treated with E7386. RNA was extracted and profiled using microarrays from each cell line and gene expression profiles were compared by differential expression testing (E7386 treatment versus DMSO vehicle, n=3 per treatment group per cell line). Blue indicates an decrease with β-catenin/CBP inhibition, while red indicates an increase with β-catenin/CBP inhibition. Note the presence of FUT2, FUT3 in the latter group. B. Comparison of ICG-001 and E7386 anti-HNSCC activities. HSC-3 cell line-derived E7386 inhibition scores are highly correlated with ICG-001 in TCGA.

Β.

1.00

Supplementary Figure 3: A. Transcriptional E7386 Inhibition Signature is Associated with Clinical Outcomes in Primary Human OSCC. Stratification of Human OSCCs (TCGA) by E7386 Inhibition Scores. Using ASSIGN, along with the TCGA OSCC data (*n*=352 samples) and E7386-repressed gene signature (*n*=976 genes) as input, we scored each sample based on the level of 'inhibition' exhibited for E7386-altered genes. **B. E7386 inhibition positively correlates with EGFR inhibition.** GSEA plots corresponding to E7386 inhibition scores in TCGA OSCC data for gene sets pertaining to small-molecule-based EGFR inhibition. Genes that are down-regulated are enriched towards higher E7386 inhibition levels, suggesting E7386 inhibition is positively correlated with EGFR inhibition in OSCC. A strong positive correlation between E7386 inhibition (in TCGA OSCCs) and EGFR inhibition suggests that E7386 inhibits genes involved in EGFR signaling in primary oral cancer tumor tissues.

EGFR Site N32 (Non-Canonical Sequon)

³⁰MFNNCEVVLGNLEITYVQR⁴⁸ + HexNAc₄Hex₅Fuc₁NeuAc₁ [M + 4H]⁴⁺ m/z 1090.4692

Supplementary Figure 4: HCD Spectrum of EGFR Site N32 Glycopeptide ³⁰MFNNCEVVLGNLEITYVQR⁴⁸ + HexNAc₄Hex₅Fuc₁NeuAc₁. The glycopeptide HCD spectrum of the precursor with $[M + 4H]^{4+}$ m/z 1090.4692, is shown. *co-isolated precursor m/z 1089.7839 (z = 4+). ** second isotope is assigned, monoisotopic mass not detected.

⁸⁵GNMYYENSYALAVLSNYDANKTGLKELPMR¹¹⁴ + HexNAc₄Hex₅Fuc₂ [M + 4H]⁴⁺ m/z 1335.8433

Supplementary Figure 5: HCD Spectrum of EGFR Site N104 Glycopeptide ⁸⁵GNMYYENSYALAVLSNYDANKTGLKELPMR¹¹⁴ + HexNAc₄Hex₅Fuc₂. The glycopeptide HCD spectrum (20% collision energy) of the precursor with $[M + 4H]^{4+} m/z$ 1335.8433, is shown. *not assigned; may be from co-isolated ion. **co-isolated precursor with overlap of two isotope distributions.

¹⁴²DIVSSDFLSNMSMDFQNHLGSCQK¹⁶⁵ + HexNAc₄Hex₅Fuc₁ [M + 4H]⁴⁺ m/z 1132.9656

Supplementary Figure 6: HCD Spectrum of EGFR Site N151 Glycopeptide ¹⁴²DIVSSDFLSNMSMDFQNHLGSCQK¹⁶⁵ + HexNAc₄Hex₅Fuc₁. The glycopeptide HCD spectrum (30% collision energy) of the precursor with $[M + 4H]^{4+} m/z$ 1332.9656, is shown. *not assigned; may be from co-isolated ion. **second isotope is assigned, monoisotopic mass not detected.

EGFR Site N172

⁶⁶CDPSCPNGSCWGAGEENCQKLTK⁸⁸ + HexNAc₂Hex₆ [M + 3H]³⁺ m/z 1345.1873

Supplementary Figure 7: HCD Spectrum of EGFR Site N172 Glycopeptide ⁶⁶CDPSCPNGSCWGAGEENCQKLTK⁸⁸ + HexNAc₂Hex₆. The glycopeptide HCD spectrum (30% collision energy) of the precursor with $[M + 3H]^{3+} m/z$ 1345.1873, is shown.

³¹¹KVCNGIGIGEFKDSLSINATNIKHFK³³⁶ + HexNAc₂Hex₆

 $[M + 4H]^{4+} m/z 964.9512$

Supplementary Figure 8: EThcD Spectrum of EGFR Site N328 Glycopeptide ³¹¹KVCNGIGIGEFKDSLSINATNIKHFK³³⁶ + HexNAc₂Hex₆. The glycopeptide EThcD spectrum (ETD 25%, HCD 15% supplemental energy) of the precursor with $[M + 4H]^{4+} m/z$ 964.9512, is shown.

³³⁷NCTSISGDLHILPVAFR³⁵³ + HexNAc₂Hex₈

 $[M + 3H]^{3+} m/z 1201.5237$

Supplementary Figure 9: HCD Spectrum of EGFR Site N337 Glycopeptide 337 NCTSISGDLHILPVAFR 353 + HexNAc₂Hex₈. The glycopeptide HCD spectrum (30% collision energy) of the precursor with [M + 3H]³⁺ m/z 1201.5237, is shown. **co-isolated precursor (overlap of two isotope distributions).

 373 TVKEITGFLLIQAWPENRTDLHAFENLEIIR⁴⁰³ + HexNAc₃Hex₄Fuc₁ [M + 5H]⁵⁺ m/z 1146.1460

Supplementary Figure 10: HCD Spectrum of EGFR Site N389 Glycopeptide 373TVKEITGFLLIQAWPENRTDLHAFENLEIIR⁴⁰³ + HexNAc₃Hex₄Fuc₁. The glycopeptide HCD spectrum (28% collision energy) of the precursor with [M + 5H]⁵⁺ m/z 1146.1460, is shown.

⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₂ [M + 4H]⁴⁺ m/z 1071.7526

Supplementary Figure 11: EThcD Spectrum of EGFR Site N420 Glycopeptide ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₂. The glycopeptide EThcD spectrum (ETD 26.6%, HCD 20% supplemental energy) of the precursor with $[M + 5H]^{5+} m/z$ 1146.1460, is shown.

524 EFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVK⁵⁶⁹ + HexNAc₄Hex₅Fuc₂NeuAc₁ [M + 6H]⁶⁺ m/z 1285.5280

Supplementary Figure 12: HCD Spectrum of EGFR Site N544 Glycopeptide ⁵²⁴EFVENSECIQCHPECLPQAMNITCTGRGPDNCIQCAHYIDGPHCVK⁵⁶⁹ + HexNAc₄Hex₅Fuc₂NeuAc₁. The glycopeptide HCD spectrum (20% collision energy) of the precursor with $[M + 6H]^{6+} m/z$ 1285.5280, is shown. * second isotope is assigned, monoisotopic mass was not detected.

⁵⁷⁰TCPAGVMGENNTLVWK⁵⁸⁵ + HexNAc₄Hex₅Fuc₁ [M + 3H]³⁺ m/z 1182.4976

Supplementary Figure 13: EThcD Spectrum of EGFR Site N579 Glycopeptide ⁵⁷⁰TCPAGVMGENNTLVWK⁵⁸⁵ + HexNAc₄Hex₅Fuc₁. The glycopeptide EThcD spectrum (ETD 45%, HCD 15% supplemental energy) of the precursor with $[M + 3H]^{3+} m/z$ 1182.4976, is shown.

⁵⁸⁶YADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPK⁶¹⁸ + HexNAc₂Hex₇

Supplementary Figure 14: HCD Spectrum of EGFR Site N599 Glycopeptide ⁵⁸⁶YADAGHVCHLCHPNCTYGCTGPGLEGCPTNGPK⁶¹⁸ + HexNAc₂Hex₇. The glycopeptide HCD spectrum (20% collision energy) of the precursor with $[M + 5H]^{5+} m/z$ 1040.4169, is shown. * unknown; **co-isolated precursor (overlap of two isotope distributions).

Supplemental Figure 15A: MALDI-TOF MS Spectrum of Released, Permethylated *N*-Glycans from Indolent CAL27 Cells. Released, sodiated, permethylated *N*-Glycans from untreated CAL27 whole cell lysate. The composition of each glycan is shown, in the format [*N*-acetylhexosamine (HexNAc), Hexose (Hex), deoxyhexose (Fuc), and *N*-acetylheuraminic acid (NeuAc)]. Red triangles indicate glycan compositions that correspond to fucosylated glycoforms.

Supplemental Figure 15B: MALDI-TOF MS Spectrum of Released, Permethylated *N*-Glycans from Metastatic HSC-3 Cells. Released, sodiated, permethylated *N*-Glycans from untreated HSC-3 whole cell lysate. The compositions of each glycan are shown, in the format [*N*-acetylhexosamine (HexNAc), Hexose (Hex), deoxyhexose (Fuc), and *N*-acetylheuraminic acid (NeuAc)]. Red triangles indicate glycan compositions that correspond to fucosylated glycoforms; * unknown.

Supplemental Figure 15C: MALDI-TOF MS Spectrum of Released, Permethylated N-Glycans from Metastatic HSC-3 Cells Treated with ICG-001. Released, sodiated, permethylated *N*-Glycans from the whole cell lysate of HSC-3 cells treated with 10 μM ICG-001. The compositions of each glycan are shown, in the format [*N*-acetylhexosamine (HexNAc), Hexose (Hex), deoxyhexose (Fuc), and *N*-acetylheuraminic acid (NeuAc)]. Red triangles indicate glycan compositions that correspond to fucosylated glycoforms.

EGFR Site N420: ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₁

Supplementary Figure 16A: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₁ HCD Spectra. Selected m/z regions of the glycopeptide HCD spectra (10% collision energy) are shown of the precursor with $[M + 4H]^{4+} m/z$ 1035.2483, from early eluting (top) and late eluting (bottom) peaks, are shown. N: *N*-acetylhexosamine; H: hexose; F: fucose.

EGFR Site N420: ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₁

Supplementary Figure 16B: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide 406 TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₁ HCD Spectra. The glycopeptide HCD spectra (10% collision energy) of the precursor with [M + 4H]⁴⁺ m/z 1035.2483, from early eluting (top) and late eluting (bottom) peaks, are shown, m/z range 100 - 2000. N: *N*-acetylhexosamine; H: hexose; F: fucose; p: peptide; * monoisotopic m/z not detected.

EGFR Site N420: ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₂

Supplementary Figure 17A: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₂ HCD Spectra. Selected regions are shown (expanded) from the glycopeptide HCD spectra (15% collision energy) of the precursor with $[M + 4H]^{4+} m/z$ 1071.7624, from early eluting (top) and late eluting (bottom) peaks, are shown. N: *N*-acetylhexosamine; H: hexose; F: fucose; * monoisotopic *m/z* not detected.

EGFR Site N420: ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₂

Supplementary Figure 17B: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₂ HCD Spectra. The glycopeptide HCD spectra (15% collision energy) of the precursor with $[M + 4H]^{4+} m/z$ 1071.7624, from early eluting (top) and late eluting (bottom) peaks, *m/z* range 100-1400, are shown. N: *N*-acetylhexosamine; H: hexose; F: fucose ; * monoisotopic *m/z* not detected.

EGFR Site N420: ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₃

Supplementary Figure 18A: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₃ HCD Spectra. Selected regions from the glycopeptide HCD spectra (10% collision energy) of the precursor with $[M + 4H]^{4+} m/z$ 1108.2771, from early eluting (top) and late eluting (bottom) peaks, are shown. N: *N*-acetylhexosamine; H: hexose; F: fucose ; * monoisotopic *m/z* not detected.

24

EGFR Site N420: ⁴⁰⁶TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₃

Supplementary Figure 18B: Comparison of Early and Late-Eluting EGFR Site N420 Glycopeptide 406 TKQHGQFSLAVVSLNITSLGLR⁴²⁷ + HexNAc₄Hex₅Fuc₃ HCD Spectra. The glycopeptide HCD spectra (10% collision energy) of the precursor with [M + 4H]⁴⁺ m/z 1108.2771, from early eluting (top) and late eluting (bottom) peaks, m/z range 100-1500, are shown; * monoisotopic m/z not detected.