
Appendix A FPSC-DTI supplement

A.1 Mean percentile ranking MPR

The mean percentile ranking (MPR) [1–3], a recall-based statistical metric, is adopted to

evaluate the method’s performance. This is a good evaluation criterion for one-class datasets

[4, 5]. Specifically, for each drug di in the test set, we generate a ranked list of the targets

sorted in descending order by the predicted scores between the current drug with all targets

in the dataset. Let rankji denote the percentile ranking (PR) of target tj with drug di. The

smaller the rank value is, the better the prediction performance of the algorithm. For example,

rankji = 0% indicates that drug di is predicted to interact with target tj with the highest

probability. Similarly, rankji = 100% signifies that drug di is predicted to interact with target

tj with the lowest probability. Herein, the definition of MPR is as follows:

MPR =

∑Nt
D

i=1Ri

N t
D

(1)

where N t
D denotes the number of drugs in the test set, and Ri can be computed as follows:

Ri =

∑Nt
T

j=1 rankji

N t
T

(2)

where N t
T denotes the number of targets in the test set for the current drug di.

A.2 Cluster analysis of the four benchmark datasets

Since there is no class label information in the drug and target data of the four benchmark

datasets, we firstly determine them the number of clusters. In this paper, we use the decision

graph of DPCSA [6] to determine the number of clusters, which requires none predefined pa-

rameter. Then, we use INCK [7], an improved K-medoids algorithm, to cluster drug and target

data, respectively. All the clustering results are given in Table A1.
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Table A1: Clustering results of four benchmark datasets

Dataset
Number of objects in each cluster

Drug Target

Enzyme
59,19,17,101,15,7,46,4,13,3 123,40,19,2,2,43,20,25,6,9

10,10,19,19,33,12,12,20,11,15 9,15,21,3,10,6,289,6,10,6

GPCR
48,27,11,19,16,6,14,11,6,22

30,23,10,4,5,16,7
9,10,10,14

IC
72,10,12,14,12,10 39,17,6,41,9,4,7,20

15,22,11,14,18 6,5,14,5,11,8,12

NR 18,15,7,9,5 12,5,5,4
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