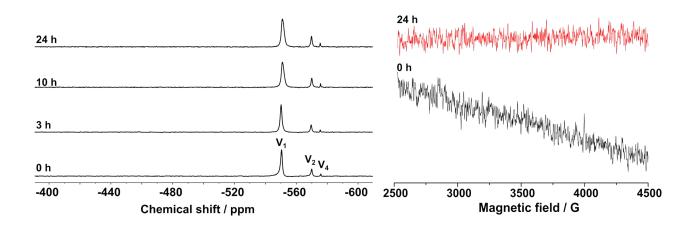
SUPPLEMENTARY INFORMATION

Polyoxometalates Function as Indirect Activators of a G Protein-Coupled Receptor

Duaa Althumairy^{a,b}, Kahoana Postal^{c,d}, B. George Barisas^{a,c}, Giovana G. Nunes^d, Deborah A. Roess^{a,e*}, and Debbie C. Crans^{a,c*}

^a Cell and Molecular Biology Program, Colorado State University Fort Collins, CO 80523, United States of America

^b Department of Biological Sciences, King Faisal University, Saudi Arabia


^c Department of Chemistry, Colorado State University Fort Collins, CO 80523, United States of America

^d Department of Chemistry, Universidade Federal do Paraná, Curitiba, Paraná, 81.531-980

^e Department of Biomedical Sciences, Colorado State University Fort Collins, CO 80523, United States of America

*Corresponding Author: e-mail: <u>Debbie.Crans@colostate.edu</u>

Summary

Fig. S1 The ⁵¹V NMR spectra (left) and EPR (right) of 1.0 mmol L⁻¹ aqueous solution, pH 7.4, of V₁ is shown as a function of time for 34 h. The signals with δ in ppm are assigned to V₁ = H₂VO₄⁻ (-554), V₂ = H₂V₂O₇²⁻ (-570), and V₄ = V₄O₁₂⁴⁻ (-575 ppm).

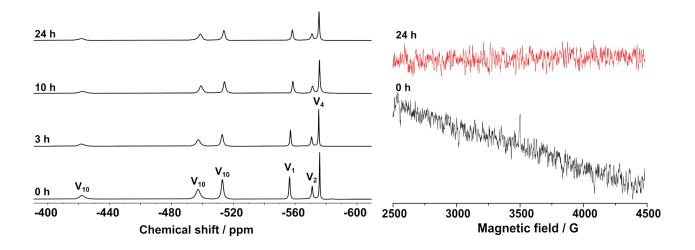
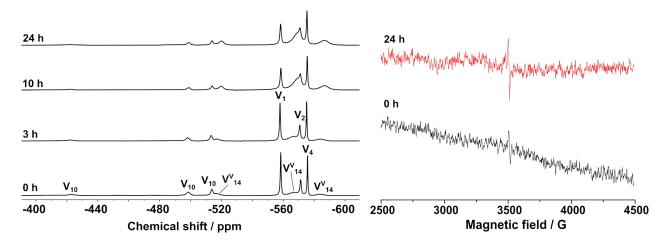
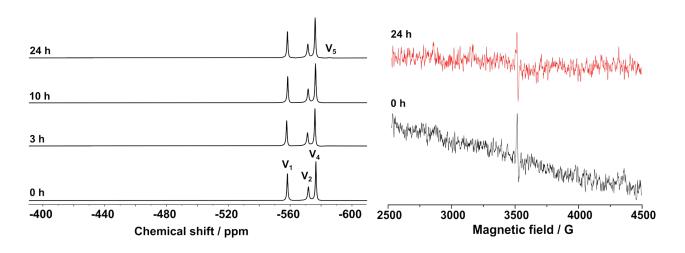




Fig. S2 The ⁵¹V NMR spectra (left) and EPR (right) of 1.0 mmol L⁻¹ aqueous solution, pH 7.4, of V₁₀ is shown as a function of time for 34 h. The signals with δ in ppm are assigned to V₁ = H₂VO₄⁻ (-557), V₂ = H₂V₂O₇²⁻ (-571), V₄ = V₄O₁₂⁴⁻ (-575), and V₁₀ = HV₁₀O₂₈⁵⁻ (-422, -497 and -512 ppm).

Fig. S3 The ⁵¹V NMR spectra (left) and EPR (right) of 1.0 mmol L⁻¹ aqueous solution, pH 7.4, of V₁₄ is shown as a function of time for 34 h. The signals with δ in ppm are assigned to V₁ = H₂VO₄⁻ (-558), V₂ = H₂V₂O₇²⁻ (-571), V₄ = V₄O₁₂⁴⁻ (-575), V₁₀ = HV₁₀O₂₈⁵⁻ (-423, -498 and -514) and VV₁₄ = H₄V₁₄O₄₂P⁵⁻ (-517, -566, and -584 ppm).

Fig. S4 The ⁵¹V NMR spectra (left) and EPR (right) of 1.0 mmol L⁻¹ aqueous solution, pH 7.4, of V₁₅ is shown as a function of time for 34 h. The signals with δ in ppm are assigned to V₁ = H₂VO₄⁻ (-558), V₂ = H₂V₂O₇²⁻ (-571), V₄ = V₄O₁₂⁴⁻ (-576) and V₅ = V₅O₁₅⁵⁻ (-584 ppm).