Supporting Information

Mitochondria-targeted artesunate conjugated cyclometalated iridium(III) complexes as potent anti-HepG2 hepatocellular carcinoma agents

Rui-Rong Ye,^{‡*a} Wan Peng,^{‡a} Bi-Chun Chen,^a Ning Jiang,^a Xuan-Qin Chen,^a

Zong-Wan Mao*b and Rong-Tao Li*a

^a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming

650500, P. R. China

^b MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China.

* Corresponding author.

E-mail addresses: yerr@mail2.sysu.du.cn (R.-R. Ye), cesmzw@mail.sysu.edu.cn (Z.-W. Mao), rongtaolikm@163.com (R.-T. Li).

[‡] These authors contributed equally.

Table of Contents

Scheme S1 Synthetic routes of Ir-ART-1–3
Fig. S1-S9 ESI-MS, ¹ H NMR spectrum and ¹³ C NMR spectrum of Ir-ART-1–3S-4
Fig. S10 UV/Vis absorption and emission spectra of Ir-ART-1–3S-8
Fig. S11 Emission spectra of 1×10^{-5} M iridium complexes conjugate with (Ir-ART-1–3) or without
(Ir-1–3) ART in PBS
Fig. S12 Emission spectra of Ir-ART-1 (A), Ir-ART-2 (B) and Ir-ART-3 (C) in PBS (a), CH ₃ CN (b)
and CH ₂ Cl ₂ (c) at 0 and 48 h S-9
Fig. S13 (A) Time-dependent changes in emission spectra (1 × 10 ⁻⁵ M, λ_{ex} = 405 nm) of Ir-ART-1
(a), Ir-ART-2 (b) and Ir-ART-3 (c) with PLE at 298 K. (B) Plots of relative emission intensities at
570 nm (Ir-ART-1, a), 600 nm (Ir-ART-2, b) and 520 nm (Ir-ART-3, c) versus time of esterase
treatmentS-10
Fig. S14 Detection of apoptosis in HepG2 cells stained with Annexin V-FITC/PI by confocal
microscopyS-11
Table S1 Photophysical data of Ir(III) complexes S-12
Table S2 Cell-cycle analysis data of Ir(III)-ART conjugates on HepG2 cells

Scheme S1 Synthetic routes of Ir-ART-1, Ir-ART-2 and Ir-ART-3

Fig. S1 ESI-MS characterization of Ir-ART-1, 1067.6 [M-PF₆]⁺.

Fig. S2 ESI-MS characterization of Ir-ART-2, 1079.5 [M-PF₆]⁺.

Fig. S3 ESI-MS characterization of Ir-ART-3, 1139.6 [M-PF₆]⁺.

Fig. S4 ¹H NMR spectrum of Ir-ART-1.

Fig. S5 ¹H NMR spectrum of Ir-ART-2.

Fig. S6 ¹H NMR spectrum of Ir-ART-3.

Fig. S7 ¹³C NMR spectrum of Ir-ART-1.

Fig. S8 ¹³C NMR spectrum of Ir-ART-2.

Fig. S9 ¹³C NMR spectrum of Ir-ART-3.

Fig. S10 (A) UV/Vis spectra (1 × 10⁻⁵ M) of Ir(III) complexes measured in PBS (a), CH₃CN (b) and CH₂Cl₂ (c) at 298 K. (B) Emission spectra (1 × 10⁻⁵ M) of Ir(III) complexes measured in PBS (a), CH₃CN (b) and CH₂Cl₂ (c) at 298 K (λ_{ex} = 405 nm).

Fig. S11 Emission spectra of 1×10^{-5} M iridium complexes conjugate with (Ir-ART-1–3) or without (Ir-1–3) ART in PBS.

Fig. S12 Emission spectra of **Ir-ART-1** (A), **Ir-ART-2** (B) and **Ir-ART-3** (C) in PBS (a), CH₃CN (b) and CH₂Cl₂ (c) at 0 and 48 h.

Fig. S13 (A) Time-dependent changes in emission spectra (1×10^{-5} M, $\lambda_{ex} = 405$ nm) of **Ir-ART-1** (a), **Ir-ART-2** (b) and **Ir-ART-3** (c) with PLE at 298 K. (B) Plots of relative emission intensities at 570 nm (**Ir-ART-1**, a), 600 nm (**Ir-ART-2**, b) and 520 nm (**Ir-ART-3**, c) versus time of esterase treatment.

Fig. S14 Detection of apoptosis in HepG2 cells stained with Annexin V-FITC/PI by confocal microscopy after HepG2 cells were incubated with **Ir-ART-1–3** for 24 h.

Compounds	Medium	$\lambda_{abs, max} (nm)$	$\lambda_{em, max} (nm)$
	PBS	380	570
Ir-ART-1	CH ₃ CN	341	592
	CH_2Cl_2	338	582
	PBS	417	600
Ir-ART-2	CH ₃ CN	417	615
	CH_2Cl_2	420	605
	PBS	364	520
Ir-ART-3	CH ₃ CN	362	525
	CH_2Cl_2	365	520
Ir-1	PBS	380	595
	CH ₃ CN	341	578
	CH_2Cl_2	338	570
Ir-2	PBS	417	625
	CH ₃ CN	417	590
	CH_2Cl_2	420	590
Ir-3	PBS	364	533
	CH ₃ CN	362	516
	CH_2Cl_2	365	510

 Table S1 Photophysical data of Ir(III) complexes

Compounds	G0/G1	S	G2/M
Control	47.17 ± 4.52	38.28 ± 3.81	14.54 ± 1.40
Ir-ART-1 (4.6 µM)	50.39 ± 4.79	26.66 ± 3.00	22.96 ± 2.35
Ir-ART-1 (6.9 μM)	38.15 ± 3.76	22.56 ± 2.30	39.29 ± 3.91
Ir-ART-1 (9.2 μM)	38.90 ± 3.77	25.13 ± 2.55	35.98 ± 3.60
Ir-ART-2 (3.4 μM)	51.75 ± 5.00	24.60 ± 2.78	23.65 ± 2.32
Ir-ART-2 (5.1 μM)	45.85 ± 4.76	26.25 ± 2.88	27.90 ± 2.93
Ir-ART-2 (6.8 μM)	40.72 ± 4.00	25.47 ± 2.55	33.81 ± 3.62
Ir-ART-3 (2.0 μM)	55.91 ± 5.66	26.38 ± 2.68	17.71 ± 1.72
Ir-ART-3 (3.0 μM)	51.92 ± 5.22	25.11 ± 2.54	22.97 ± 2.00
Ir-ART-3 (4.0 μM)	46.36 ± 4.60	25.51 ± 2.46	28.14 ± 2.88

Table S2 Cell-cycle analysis data of Ir(III)-ART conjugates on HepG2 cells^a

^a Data shown are mean \pm SD of three independent experiments for each treatment.