Electronic Supplementary Information

Enantiomeric Copper Based Anticancer Agents Promoting Site-Specific Cleavage of G-

Quadruplex Telomeric DNA and non-random cleavage of plasmid DNA

Sabiha Parveen^a, J. A. Cowan^b, Zhen Yu^b and Farukh Arjmand^{a*}

^aDepartment of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.

^bDepartment of Chemistry and Biochemistry, The Ohio State University,100 West 18th Avenue, Columbus, OH 43210 (USA).

*Correspondence to: Dr. Farukh Arjmand, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India. tel: 0571 2703893, e-mail: farukh.arjmand18@gmail.com

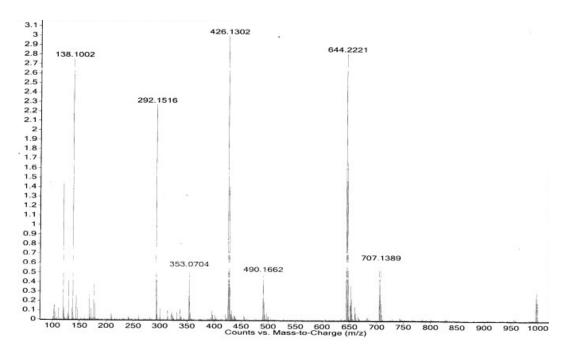


Fig. S1(i)ESI-Mass spectrum of complex 1_{s.}

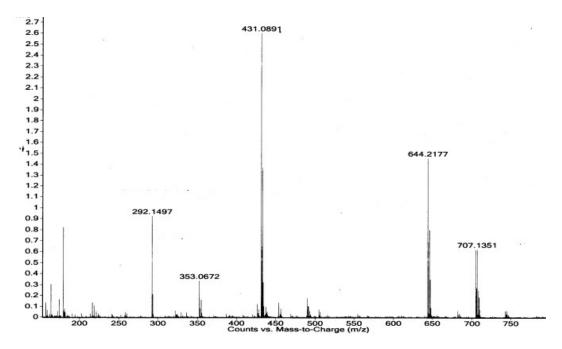


Fig. S1 (ii) ESI-Mass spectrum of complex $1_{R.}$

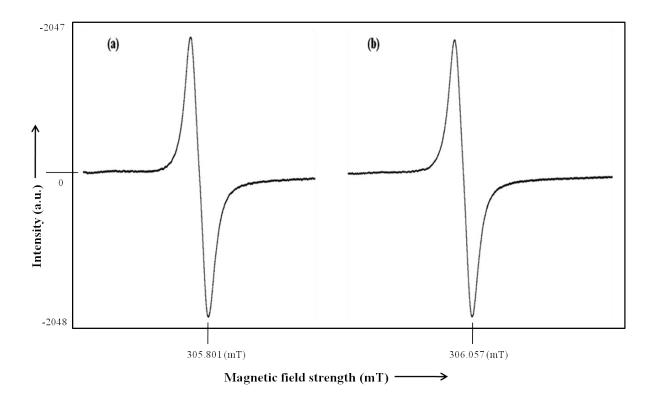


Fig. S2 EPR spectra of complexes (a) 1_S and (b) 1_R .

Binding studies with CT-DNA

DNA interaction studies of complexes $\mathbf{1}_{s}$ and $\mathbf{1}_{R}$ were carried out by electronic absorption at λ_{max} *ca.* 274 and 270 nm, respectively following titration with aliquots of CT–DNA (0.00– 3.33 ×10⁻⁵ M). The results demonstrated 'hyperchromicity' with no significant shift in absorption intensities (Fig. S3) and indicative of an electrostatic mode of binding.¹ The intrinsic binding constant (K_b) values were quantified and found to be 5.031(±0.126)x 10⁴, 3.862(±.235)x10⁴ M⁻¹ for $\mathbf{1}_{s}$ and $\mathbf{1}_{R}$, respectively. The binding propensity of Senantiomer to CT–DNA was higher in magnitude than the corresponding R-enantiomer, underscoring the sensitive discrimination between two conformations. Most likely the higher affinity of S-enantiomer for DNA helix reflects a better fit to right-handed B–DNA due to compatible molecular symmetry based on the two–pole complementary principle.²

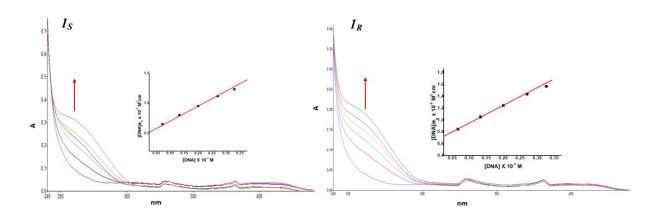


Fig. S3 Absorption spectral traces of complexes 1_s and 1_R in Tris–HCl buffer upon addition of CT–DNA at 25 °C. Inset: plots of [DNA]/ ε_b vs.[DNA] for the titration of CT–DNA with complexes,[Complex] 0.67 x10⁻⁵ M, [DNA] 0–3.33 x 10⁻⁵ M.

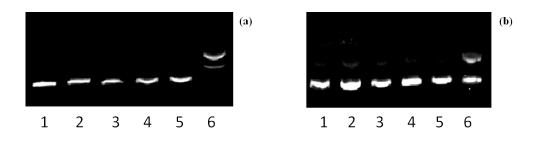
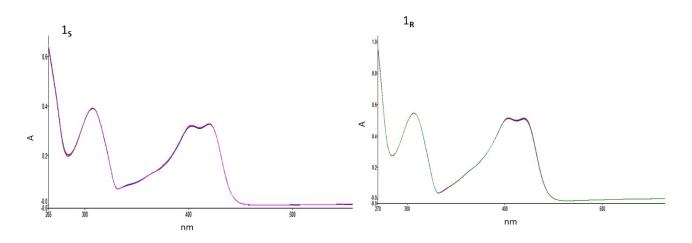



Fig. S4 Control reactions for DNA cleavage (a) $\mathbf{1}_{S}$ and (b) $\mathbf{1}_{R}$, carried out in 10 mM Tris buffer, pH = 7.4, 37 °C, for 30 min, with $[DNA] = 50 \ \mu M$ for each reaction. Lane (1) DNA starting material; (2) DNA spontaneous reaction; (3) DNA + Asc 1mM; (4) DNA + Asc + $H_2O_2 \ 1mM$; (5) DNA + 10nM $\mathbf{1}_{S}/\mathbf{1}_{R}$. (6) DNA + 1 mM Asc + 1 mM H_2O_2 + 10nM $\mathbf{1}_{S}/\mathbf{1}_{R}$.

Fig. S5 UV-vis absorption spectra of complexes 1_s and 1_R at different time intervals (0 h, 1 h, 12 h, and 24 h).

References

- 1 S. Parveen, M. Usman, S. Tabassum and F. Arjmand, Synthesis of chiral R/Spseudopeptide-based Cu(II) & Zn(II) complexes for use in targeted delivery for antitumor therapy: enantiomeric discrimination with CT-DNA and pBR322 DNA hydrolytic cleavage mechanism, *RSC Adv.*, 2015, **5**, 72121–72131.
- P. Yang and M. Guo, Interaction of Some Non-Platinum Metal Anticancer Complexes With Nucleotides and DNA and The Two-Pole Complementary Principle (TPCP) Arising Therefrom, *Met.-Based Drugs*, 1998, 5, 41–58.