Supplemental Information

LC-ICP-MS Method for the Determination of "Extractable Copper" in Serum

C. Derrick Quarles, Jr.^{1*}, Marcel Macke², Bernhard Michalke³,

Hans Zischka^{4,5}, Uwe Karst², Patrick Sullivan¹, Paul Field¹

¹Elemental Scientific, Inc., 7277 World Communications Dr., Omaha, NE, USA

²University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstrasse 30, 48149 Münster, Germany

³Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.

⁴Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.

⁵Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Biedersteiner Strasse 29, 80802 Munich, Germany.

Figure S1. Chromatographic separation of bound and extractable Cu in bovine blood plasma and serum samples that were stored under different anti-coagulation agents/methods. Serum samples were analyzed using a 50x inline dilution factor. This set of samples was included to determine if there were any sample types that could not be analyzed with this separation method. CPD = citrate-phosphate-dextrose, ACD = acid-citrate-dextrose, Alsevers = saline solution with dextrose, sodium citrate, citric acid, and sodium chloride.

Figure S2a. Chromatograms of fetal serum (F Serum) with the addition of 0.016 - 0.79 μ M Cu (1 - 50 μ g L⁻¹ Cu). Serum samples were analyzed using a 50x inline dilution factor.

Figure S2b. Bound and extractable Cu results from the fetal serum with the addition of 0.016 - 0.79 μ M Cu (1 - 50 μ g L⁻¹ Cu).

Figure S2c. Chromatograms of heparinized plasma with the addition of 0.016 - 0.79 μ M Cu (1 - 50 μ g L⁻¹ Cu). Plasma samples were analyzed using a 50x inline dilution factor.

Figure S2d. Bound and extractable Cu results from the heparin samples with the addition of 0.016 - 0.79 μ M Cu (1 - 50 μ g L⁻¹ Cu).

The addition of 0.016 μ M Cu into heparin and EDTA bovine blood (Fig. S2f) resulted in a higher bound Cu value as compared to fetal serum. The amount of bound Cu in Fig S1 for fetal serum is much lower than heparin and EDTA, suggesting a lower protein level in the neat sample. Lower protein levels would result in less binding of extractable Cu when spiked in this study.

Figure S2e. Chromatograms of EDTA blood (analyzed as plasma) with the addition of 0.016 - 0.79 μ M Cu (1 - 50 μ g L⁻¹ Cu). Plasma samples were analyzed using a 50x inline dilution factor.

Figure S2f. Bound and extractable Cu results from the EDTA samples with the addition of 0.016 - 0.79 μ M Cu (1 - 50 μ g L⁻¹ Cu).

Figure S3. Typical calibration curve for extractable Cu ranging from 0.016 - 1.6 μ M Cu (1 - 100 μ g L⁻¹ Cu) using the chromatographic separation method for bound and extractable Cu.

Figure S4. Comparison of $Atp7b^{+/-}$ control, $Atp7b^{-/-}$ healthy (WD - Healthy), and $Atp7b^{-/-}$ Wilson diseased (WD - Diseased) rats for total Cu. The square data points with error bars represent the average ± standard deviation for each group.