Electronic Supplementary Information

Structural characterization and pharmacological assessment in

vitro / in vivo on a new copper(II)-based derivative of enrofloxacin

Rui-Feng Guo[†], Hou-Tian Yan[†], Rui-Xue Liu, Hong-Chang Li, Yan-Cheng Liu^{*}, Zhen-Feng Chen and Hong Liang^{*}

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China

[†] The authors contribute equally to this work.

*Corresponding authors' E-mail addresses: ycliu@gxnu.edu.cn (Y.-C. Liu); hliang@gxnu.edu.cn (Hong Liang); Tel./Fax: +86-773-2120958 (Y.-C. Liu)

Figure S1. The FT-IR spectra of Enrofloxacin (H-EFX) (upper) and EFX-Cu (bottom).

Figure S2. The packing diagram of the crystal structure of the EFX-Cu.

Figure S3. The ESI-MS spectrum of EFX.

Figure S3. The ESI-MS spectra of the EFX-Cu in the low resolution (upper) and high resolution (lower) mode, respectively, both of which indicating the coordinated species of EFX-Cu.

Figure S4. The time-dependent UV-Vis spectra of the EFX-Cu to indicate its stability in aqueous solution at room temperature.

Figure S5-A. The in vitro antibacterial effect of EFX towards five typical pathogenic bacteria .

Figure S5-B. The in vitro antibacterial effect of EFX-Cu towards five typical pathogenic bacteria.

Figure S6. The antibacterial activity of EFX and its copper(II) complex, EFX-Cu, represented by the MIC and MBC values (μ g/mL).

Figure S7. The development status of the wild-type AB zebrafish in each group incubated with different concentration of EFX-Na.

Figure S8. The ROS production in the hepatocyte cell line HL-7702 (upper) and the lung fibroblast cell line L-929 (lower) induced different concentrations of EFX-Na, reflected by the quantitative emission intensity of the green fluorescence.

	Incubated concentrations of EFX-Cu for each group (µmol/L)					
EFX-Na	Control	0.01	0.1	1	10	20
	Survival (death) of zebrafish					
24 hpf	28(2)	30(0)	26(4)	28(2)	30(0)	30(0)
48 hpf	28(2)	30(0)	26(4)	26(4)	30(0)	26(4)
72 hpf	28(2)	30(0)	26(4)	24(6)	30(0)	10(20)
96 hpf	28(2)	30(0)	26(4)	24(6)	30(0)	10(20)
120 hpf	28(2)	30(0)	26(4)	24(6)	30(0)	6(24)

Table S1. The survival and death of the tested zebrafish in each group incubated with different concentrations of EFX-Na.