Electronic Supplementary Information for the study entitled

Water soluble selenometabolome of *Cardamine violifolia*

by

Laurent Ouerdane^a, Eszter Borbála Both^b, Jiqian Xiang^c, Hongqing Yin^c, Yu Kang^c, Shuxun Shao^d, Katalin Kiszelák^b, Zsuzsa Jókai^b, Mihály Dernovics^{e*}

that is published in Metallomics, DOI: 10.1039/D0MT00216J

^a Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR5254, Hélioparc, 2, Av. Pr. Angot, 64053 Pau, France
^b Department of Applied Chemistry, Szent István University, Villányi út 29-43., 1118 Budapest, Hungary

^c Enshi Autonomous Prefecture Academy of Agriculture Sciences, 517 Shizhou Road, Enshi, Hubei Province 445002, China

^d State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, Guizhou Province 550081, China

^e Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2., 2462 Martonvásár, Hungary

*corresponding author

Fig. S1: Full scan spectrum from Fr4, showing the selenocystathionine related selenium patterns (in-source fragments, parent molecule and sodium adduct). Stars indicate the ⁷⁸Se-⁸⁰Se isotopologues.

Fig. S2: Extracted ion chromatogram of selenohomocysteine ion-source fragment (m/z 181.97). Arrows and values indicate the corresponding and detected selenium species (see Table 1 for further information).

Chemical Formula: C₆H₁₂NO₄Se⁺ Exact Mass: 241.9926

Experimental	Elemental composition,	Theoretical	Difference,
111/2	[[0]]]]	111/2	ppin
181.97069	C4H8NO2Se+	181.97150	-4.45
135.96558	C3H6NSe+	135.96600	-3.09
108.95336	C2H5Se+	108.95510	-15.97
94.93872	CH3Se+	94.93940	-7.16

 $\begin{array}{c} & H_2 & H_2 & \textcircled{\bullet} \\ CH & C & C & Se \\ & \\ NH_2 & \\ & Chemical Formula: C_4H_8NO_2Se^{\dagger} \end{array}$

соон

Exact Mass: 181.9715

H₃C

 $\begin{array}{c} Chemical \ Formula: \\ C_2H_5Se^+ \\ Exact \ Mass: \ 108.9551 \end{array}$

Chemical Formula: CH₃Se⁺ Exact Mass: 94.9394

Chemical Formula: C₃H₆NSe⁺ Exact Mass: 135.9660

Fig. S3: Proposed structures of the m/z 241.9926 compound and its MS/MS fragments, together with mass accuracy data of the fragments (see Fig. 2).

Chemical Formula: C₈H₁₆NO₃Se⁺ Exact Mass: 254.0290

COOF

ĊH

NH₂

-C ² -	-C-	⊕ —Se	

Chemical Formula: C₂H₃Se⁺ Exact Mass: 106.9394

 $=CH_2$

Chemical Formula: C₄H₈NO₂Se⁺ Exact Mass: 181.9715

Chemical Formula: C₃H₆NSe⁺ Exact Mass: 135.9660 [⊕] H₂ — с == с н₂

Chemical Formula: C₄H₅Se⁺ Exact Mass: 132.9551

 $H_2Se \xrightarrow{\oplus} C^2 \xrightarrow{\oplus} C \xrightarrow{\oplus} CH_2$

Chemical Formula: C₄H₇Se⁺ Exact Mass: 134.9707

Fig. S4: Proposed structures of the m/z 254.0289 compound and its MS/MS fragments, together with mass accuracy data of the fragments (see Fig. 3).

Experimental m/z	Elemental composition, [M+H]+	Theoretical m/z	Difference, ppm
181.97047	C4H8NO2Se+	181.9715	-5.66
135.96649	C3H6NSe+	135.966	3.60
134.96881	C4H7Se+	134.97070	-14.00
132.95525	C4H5Se+	132.95510	1.13
106.93961	C2H3Se+	106.93940	1.96

Chemical Formula: C₁₀H₂₀NO₃Se⁺ Exact Mass: 282.0603

-			
Experimental m/z	Elemental composition, [M+H]+	Theoretical m/z	Difference,
181.97079	C4H8NO2Se+	181.97150	-3.90
163.00156	C6H11Se+	163.00200	-2.70
135.96549	C3H6NSe+	135.96600	-3.75

Chemical Formula: C₃H₆NSe⁺

NH₂

Chemical Formula: C₆H₁₁Se⁺ Exact Mass: 163.0020

Chemical Formula: C4H8NO2Se+ Exact Mass: 181.9715

Exact Mass: 135.9660

Fig. S6: Proposed structures of the m/z 284.0396 compounds and their MS/MS fragments, together with mass accuracy data of the fragments (see Fig. 5).

Fig. S7: Proposed structures of the m/z 312.0345 compounds and their MS/MS fragments, together with mass accuracy data of the fragments (see Fig. 6).

Experimental m/z	Elemental composition, [M+H]+	Theoretical m/z	Difference, ppm
108.95479	C2H5Se+	108.9551	-2.85
94.93865	CH3Se+	94.9394	-7.90

Chemical Formula: CH₃Se⁺ Exact Mass: 94.9394 Chemical Formula: C₂H₅Se⁺ Exact Mass: 108.9551

Fig. S8: Proposed structures of the m/z 197.0075 compound and its MS/MS fragments, together with mass accuracy data of the fragments (see Fig. 7).

Fig. S9: Proposed structures of the m/z 285.0600 compounds and their MS/MS fragments, together with mass accuracy data of the fragments (see Fig. 8).

Fig. S10: Additional (zoomed) MS/MS spectrum of the m/z 581.1092 compound (see Fig. 9 and S11).

Fig. S11: Proposed structures of the MS/MS fragments of the m/z 419.0568 and 581.1092 compounds, together with mass accuracy data of the fragments (see Fig. 9).

MS retention time (min): 0.8477 Channel name: 2: RT=0.8477 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S12: Compound at the experimental m/z 416.08051 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum, together with the proposed structures and the mass accuracy data of the MS/MS fragments.

MS retention time (min): 0.7166 Channel name: 2: RT=0.7166 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S13: Compound at the experimental m/z 446.09233 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum, together with the proposed structures and the mass accuracy data of the MS/MS fragments.

216

Fig. S14: Compound at the experimental m/z 446.09233 (for details, see Table 1); proposed structures and the mass accuracy data of the MS/MS fragments.

Fig. S15: IP-RP-IDA-ICP-MS based quantification of selenolanthionine (eluting at 6.8 min) extracted from C. violifolia leaves. (a) LC-ICP-MS chromatogram recorded on ⁸⁰Se; (b) LC-ICP-MS chromatogram recorded on ⁸²Se used for isotope dilution; (c) selenium mass flow calculated from the ⁸⁰Se/⁸²Se data.

Fig. S16: In-source selenohomocysteine fragment (m/z 181.971) of selenocystathionine from Fraction #4, together with several other minor appearance of this fragment (indicated with '*'). Data were recorded on an Agilent 6530 ESI-QTOFMS instrument.

Known selenium species (other than selenolanthionine) detected in the water soluble selenometabolome of C. violifolia

Channel name: 2: RT=0.5845 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S17: Selenocystathionine (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 0.6920 Channel name: 2: RT=0.6920 mins : DDA TOF MSe (50-1000) 6eV...

Fig. S18: Selenohomocystine (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S19: Selenosugar at m/z 407 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S20: Se-selenohomocysteinyl-diseleno-homocysteine (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Unknown selenium species detected in the water soluble selenometabolome of C. violifolia without structure assignment (in the order of m/z values; see Table 1)

Fig. S21: Compound at the experimental m/z 241.99296 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 1.3787 Channel name: 2: RT=1.3787 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S22: Compound at the experimental m/z 268.04482 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 0.7313 Channel name: 2: RT=0.7313 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S23: Compound at the experimental m/z 270.02341 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/. MS/MS spectrum couldn't be recorded because of low abundance.

Fig. S24: Compound at the experimental m/z 301.09063 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/. MS/MS spectrum couldn't be recorded because of spectral interference.

Fig. S25: Compound at the experimental m/z 313.02949 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S26: Compound at the experimental m/z 377.07037 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 2.3154 Channel name: 2: RT=2.3154 mins : DDA TOF MSe (50-1000) 6eV ESI+

4.37e4

Fig. S27: Compound at the experimental m/z 391.08672 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 0.6015 Channel name: 2: RT=0.6015 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S28: Compound at the experimental m/z 405.06603 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S29: Compound at the experimental m/z 434.09228 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Channel name: 2: RT=2.0086 mins : DDA TOF MSe (50-1000) 6eV ESI+ 8.92e4 384,77133 80000 (a) 70000 (b) (b') 60000 50000 Intensity [Counts] 40000 256.85125 385.27392 30000 20000 279.0942 585.37540 194.11799 564.19334 10000 118.08570 768.53998 85.77436 MS retention time (min): 2.0296 Collision energy (V): 14.1 758.22231 69.54216 52 244.99092 50 100 200 300 400 500 600 700 800 900 1000 Observed mass [m/z] 45 (c) 40 244,99489 35 106.04963 25 319,88801 20 46.97972 15 195.10382 69.03426 190,98119 377 7396/ 10 200 250 Observed mass [m/z] 150

MS retention time (min): 2.0086

Fig. S30: Compound at the experimental m/z 435.04004 (for details, see Table 1); (a) full scan spectrum; (b) and (b') full scan spectra /zoomed/; (c) MS/MS spectrum. MS retention time (min): 1.5291 Channel name: 2: RT=1.5291 mins : DDA TOF MSe (50-1000) 6eV E...

Fig. S31: Compound at the experimental m/z 447.11604 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/. MS/MS spectrum couldn't be recorded because of low abundance.

MS retention time (min): 0.7496

Fig. S32: Compound at the experimental m/z 448.10674 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S33: Compound at the experimental m/z 460.10880 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 0.6075 Channel name: 2: RT=0.6075 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S35: Compound at the experimental m/z 482.9912 (for details, see Table 1). MS/MS spectrum couldn't be recorded because of low abundance. Data obtained with an Agilent 6530 ESI-QTOFMS system.

Fig. S36: Compound at the experimental m/z 489.05747 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 2.1673 Channel name: 2: RT=2.1673 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S37: Compound at the experimental m/z 523.12784 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

MS retention time (min): 2.3337

Channel name: 2: RT=2.3337 mins : DDA TOF MSe (50-1000) 6eV ESI+

Fig. S38: Compound at the experimental m/z 537.14451 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S39: Compound at the experimental m/z 552.06109 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum.

Fig. S40: Compound at the experimental m/z 614.1468 (for details, see Table 1); (a) full scan spectrum; (b) full scan spectrum /zoomed/; (c) MS/MS spectrum. Data obtained with an Agilent 6530 ESI-QTOFMS system.