Gold nanoclusters cause selective light-driven biochemical catalysis

in living nano-biohybrid organisms

Electronic Supplementary Information

John R. Bertram,^{1,2,#} Yuchen Ding,^{2,3,#} Prashant Nagpal^{1,2,3,*}

¹ Materials Science and Engineering, University of Colorado Boulder
² Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder
³ Department of Chemical and Biological Engineering, University of Colorado Boulder
[#]These authors contributed equally to the manuscript
* Corresponding Author. Email: pnagpal@colorado.edu

Supporting Information:

Figure S1 – DPV Curves of Au₁₅, Au₁₈, and Au₂₂
Figure S2– Biocompatibility tests of small Au NCs
Figure S3– Light-driven ammonia production using nanorgs with small Au NCs
Figure S4 – Combined ammonia and hydrogen production for Au₂₂
Figure S5 – NH₃ Production Dependence on Ascorbic Acid
Figure S6 – Representative ammonia assay data and calibration curve
Figure S7 – Selective binding of nanoparticles to the targeted nitrogenase enzyme
Figure S8 – Native PAGE of Au NCs
Table S1 – Representative data for calculating NH₃ TON
Turnover Frequency Calculations
Quantum Efficiency Calculations
Photon-to-Fuel Conversion Efficiency Calculations

Figure S1. DPV curves and electrochemical potentials of Au_{15} , Au_{18} , and Au_{22} NCs. Differential pulse voltammetry curves for Au_{15} , Au_{18} , and Au_{22} determining their conduction band and valence band values relative to NHE.

Fig. S2. Biocompatibility tests of small Au NCs. Growth curves for (a) Au_{10-12} and (b) Au_{15} , compared to cell growth with no Au NCs, under light irradiation. (c) cell viability (resazurin dye assay, compared to no Au NCs as 100%) after treatment under light irradiation for 4 hours.

Fig. S3. Light-driven ammonia production using nanorgs with small Au NCs. Turnover number for the biocatalytic reaction of ammonia production from air using nanorgs formed from *A. vinelandii* DJ995 strain with Au_{10-12} , and Au_{15} NCs. The variation of ammonia production with increasing Au NC concentration tracks well with an initial increase in light absorption, subsequent saturation of nano-biohybrids, and subsequent loss of cell viability (Fig. S2) at higher concentrations.

Fig. S4. Time-resolved light-driven ammonia and hydrogen production. Kinetic data for the production of H_2 and NH_3 over 5 hours for *A. vinelandii* DJ995 in the presence of 8μ M Au₂₂ NCs. The production of hydrogen in congruence with ammonia is facilitated by the nitrogenase enzyme which produces a 2:1 ratio of ammonia to hydrogen for each reaction.

Figure S5. NH₃ production dependence on ascorbic acid. Au₂₂-A. Vinelandii nanorg tests were performed with and without ascorbic acid to demonstrate that ascorbic acid itself minimally affects the cellular metabolism. This indicates that the electrons powering N_2 reduction through nitrogenase come from Au NCs.

Fig. S6. Representative ammonia assay calibration curve. Calibration curve for the colorimetric ammonia assay to determine the amount of ammonia generated by the nano-biohybrids in solution.

Fig. S7. Selective binding of nanoparticles to the targeted nitrogenase enzyme. Lane a: Protein molecular weight marker (From top to bottom: 116.0, 66.2, 45.0, 35.0, 25.0, 18.4 kDa). Lane b: Protein from *A. vinelandii* DJ995 cell lysate bound to nanoparticles (Three bands correspond to β , α -unit of MoFe protein and Fe protein, from top to bottom). Lane c: Purified His-tag MoFe-nitrogenase. Lane d: Cell lysate prepared from *A. vinelandii* DJ995.

Fig. S8. Native polyacrylamide gel electrophoresis (PAGE) of Au NCs to characterize their purity.

Table S1. Table of representative data for the light-driven production of NH_3 by $Au_{22} NC - A$. *vinelandii* nano-biohybrid.

Sample	T ₀ (0 hours, PL Intensity)	T ₁ (4 hours, PL Intensity)	NH ₃ in aliquot (nmols)	NH ₃ in solution (nmols)
Au ₂₂ - 4 μM	307	1586	1.98	39.76
Au ₂₂ - 8 μM	362	2304	3.07	61.13
Au ₂₂ - 20 μM	406	2532	3.36	67.29
$\begin{array}{c} Au_{22}-8 \ \mu M \\ Dark \end{array}$	358	427	0.05	1.02
$Au_{22} - 0 \ \mu M$	276	309	0.03	0.63
$Au_{22} - 8 \ \mu M \ No$ Cells	342	401	0.05	0.87

NH₃ Turnover Number and Turnover Frequency Calculations

NH₃ turnover numbers (TON) were calculated based on the known number of cells in the reaction medium and the measured amount of NH₃ generated by the light-driven process of the nanorgs. This value was taken to be 7.48×10^{-16} mols cells / mL at OD₆₀₀ = 1.0.

 $TON = \frac{mols \ NH_3}{mols \ cells}$

Similarly, turnover frequency (TOF) was calculated by using the slope of NH_3 TON as a function of time (Figure 4a in the main text), giving a TOF in units of h⁻¹.

Estimation of Quantum Efficiency (QE)

The quantum efficiency (QE), defined as the ratio of electron production to the total amount of photon absorbed, was estimated based on the following parameters:

- 1. NH_3 and H_2 turnover frequency: 6250 and 3075 s⁻¹, respectively.
- 2. Au₂₂ QDs: 8 μ M concentration (c), the extinction coefficient at 400 nm = 10000 M⁻¹cm⁻¹.
- 3. Cell $OD_{600} = 1.0$, corresponding to 4.5×10^8 cell / ml for *Azotobacter vinelandii*.
- 4. Light source: 400 nm LED, with 1.6 mW/cm² irradiation intensity (I).

- 5. Reactor: a glass vial with ~ 1 cm inner diameter (d), with total reaction volume (V) of 1 ml. Therefore, the irradiation cross section $S = \pi d^2/4 = 0.52$ cm² and the light path b = V/S = 1.91 cm.
- 6. The cellular uptake of the Au_{22} NCs is 92%.
- 7. The copy number of 7x His-tag MFN per cell is $\sim 10^5$, and assuming one Au₂₂ NC bind to one histidine on the His-tag to form the (Au₂₂)₇-MFN bioconjugates.

The total number of Au₂₂ NC bound to the MFN in 1 ml mixture is:

 $N = 4.5 \times 10^8 \times 10^5 \times 7 = 3.15 \times 10^{14}$

This corresponds to a concentration of $c' = \frac{N}{N_A V} = \frac{3.15 \times 10^{14}}{6.02 \times 10^{23} mol^{-1} \times 1 ml} = 0.523 \,\mu M$, which is lower than the total uptaken Au₂₂ NCs.

Based on the Lambert-Beer's law, the light absorbed A = ε bc = 0.01, and the transmittance can be calculated by A = $2 - \log(\% T)$, and T = 97.7% and the absorbed part is 1 - T = 2.3 %.

The incident photon number can be calculated from the irradiation intensity:

 $N' = \frac{total \; energy}{photon \; energy} = \frac{intensity * area * time}{hc/\lambda} = \frac{ISt}{hc/\lambda}$

And the incident photon flux (F_{inc} = N'/t) is $F_{inc} = \frac{IS\lambda}{hc} = 1.676 \times 10^{15} s^{-1}$.

The absorbed photon by the nanorgs is $F_{abs} = F_{inc} \times (1 - T) = 3.82 \times 10^{13} s^{-1}$.

The total electrons produced from the nanorgs can be calculated from the TOF of NH_3 (3 electrons per NH_3 molecule) and H_2 (2 electrons per H_2 molecule), and for one cell,

the electron flux is $F_{e/cell} = 3 \times T(NH_3) + 2 \times TOF(H_2) = 24900 \text{ s}^{-1}$.

With $OD_{600} = 1.0$ cell in 1 ml total volume, the total electron flux is $F_e = 1.12 \times 10^{13} s^{-1}$.

Therefore, $QY = F_e / F_{abs} \times 100\% = 29.3$ %.

Photon-to-Fuel Conversion Efficiency Calculations

To calculate the photon-to-fuel conversion efficiency (PFCE), the following set of parameters were used:

Ammonia: 382.6 KJ/mol

Hydrogen: 286 KJ/mol

For 1 ml nanorgs, the total energy output (as for the formation of ammonia and hydrogen) per second is:

$$E_{out} = (E_{ammonia} \times TOF(ammonia) + E_{hydrogen} \times TOF(hydrogen))$$

$$N_A$$

$$= (382.6 \times 6250 + 286 \times 3075) \times 4.5 \times 10^8 / (6.02 \times 10^{23}) = 2 \times 10^{-9} kJ = 2.445 \, \mu J$$

The energy input (as of 400 nm photon absorbed by the nanorgs) per second is:

 $E_{in} = I \times S \times (1 - T) = 1.6 \times 10^{-3} \times 0.52 \times 0.023 = 18.94 \,\mu J$

Photon-to-fuel conversion efficiency $PFCE = E_{out}/E_{in} = 12.9$ %.