Electronic Supplementary Information (ESI)

Structure-tunable supraparticle assemblies of

hollow cupric oxide sheathed with nanographenes

Minsu Gu,^{†1} Woo-ram Lee,^{†2} Minkyung Kim,³ Jiwoong Kang,² Jae Sung Lee,³ Levi T. Thompson,⁴

and Byeong-Su Kim¹*

¹Department of Chemistry, Yonsei University, Seoul 03722, Korea

²Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109,

United States

³School of Energy and Chemical Engineering, Ulsan National Institute of Science and

Technology (UNIST), Ulsan 44919, Korea

⁴College of Engineering, University of Delaware, Newark, Delaware 19716, United States

[†]These authors contributed equally to this work.

E-mail: bskim19@yonsei.ac.kr (B.-S.K.)

Figure S1. (a) TEM image of hollow Cu_2O SPs with the corresponding size distribution histograms of Cu_2O for (b) primary particles and (c) supraparticles (SPs).

Figure S2. SEM images of NGO coated Cu₂O SPs.

Figure S3. Nitrogen adsorption-desorption isotherms of (a) bare Cu₂O SPs and (b) NGO/Cu₂O composites and the corresponding pore size distribution plots of (c) bare Cu₂O SPs and (d) NGO/Cu₂O nanocomposites.

Figure S4. SEM images of bulk GO coated Cu₂O SPs.

Figure S5. XRD of NGO/Cu₂O composites after thermal treatments at various temperatures.

Figure S6. XRD of NGO.

Figure S7. High-resolution XPS spectra of (a) Cu 2p and (b) C 1s for Cu₂O and NGO/Cu₂O composites after thermal treatment.

Figure S8. FT-IR of NGO/Cu₂O composites after thermal treatment at various temperatures.

Figure S9. Nitrogen adsorption-desorption isotherms of (a) bare CuO SPs and (b) RNGO/CuO composites.

Figure S10. CV curves of (a) Cu₂O and (b) NGO/Cu₂O at various cycles.

Figure S11. (a) Galvanostatic charge/discharge voltage profiles of Cu₂O, NGO/Cu₂O, and RNGO/CuO SPs for the 2nd cycle at a current rate of 100 mA g^{-1} between 0.02 – 3.0 V vs. Li/Li⁺. (b) Discharge capacities and coulombic efficiency of RNGO/CuO at a current rate of 100 mA g^{-1} , and (c) rate capabilities of Cu₂O, NGO/Cu₂O, and RNGO/CuO SPs at varying current densities.

Figure S12. Discharge capacities of CuO and RNGO/CuO at a current rate of 100 mA g^{-1} .