Electronic Supplementary Information

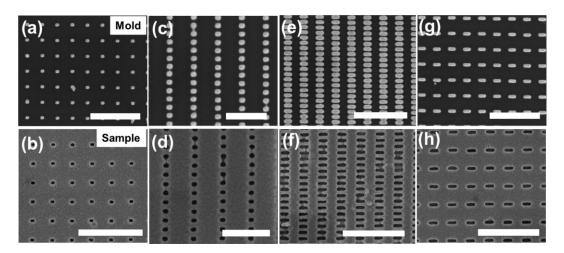
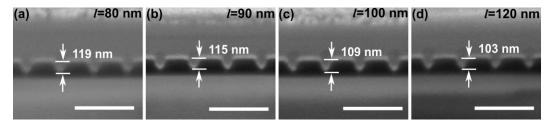
Multilevel Nanoimprint Lithography with a Binary Mold for Plasmonic Colour Printing

Muhammad Faris Shahin Shahidan, † Jingchao Song, † Timothy D James, †,‡ and Ann Roberts *,†

†School of Physics, The University of Melbourne, 3010, Australia ‡Reserve Bank of Australia, Craigieburn, Victoria, 3064, Australia

E-mail: mshahidan@student.unimelb.edu.au

Nanoimprint Lithography Results

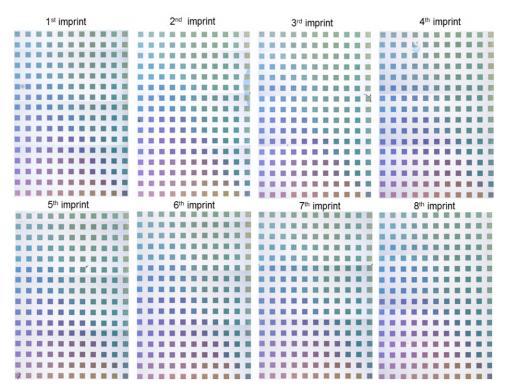

Figure S1: SEM images of fabricated mould with different particle geometry: (a) l=75 nm, P_x =100 nm, (c) l=75 nm, P_x =300 nm, (e) l=150 nm, P_x =100 nm and (d) l=150nm, P_x =300 nm; and SEM images of the corresponding fabricated sample with different particle geometry: (b) l=75 nm, P_x =100 nm, (d) l=75 nm, P_x =300 nm, (f) l=150 nm, P_x =100 nm and (h) l=150nm, P_x =300 nm. All scale bars refer to 500 nm

Figure S2: Cross-sectional images of the shows the height of the imprinted structures with fixed periodicity, P_x but varying length, l from 80-120 nm. All scale bars refers to 500 nm

Table S1: Table showing the relationship between the periodicity, P_x of the imprinted structures and the resultant vertical gap size, g (and the standard deviation) measured from the SEM images. The equation of line of best fit and the r-square value were obtained from the line plot showed in Figure 3.

Periodicity, P_x (nm)	100	140	180	220	260	300
Vertical gap size, g (nm)	15.3	27.2	39.3	53.6	65.5	84.6
g (standard deviation, nm)	2.862	4.093	4.467	3.872	3.086	4.658
Equation of line of best fit	y=0.339x-20.371					
R-square value	0.99365					

Figure S3: Bright field image of color palettes of reproduced nanoimprinted samples from first to eighth imprints under linearly polarized light with direction parallel to the long-axis of the nanorods

Finite Element Method (FEM) Simulations Results

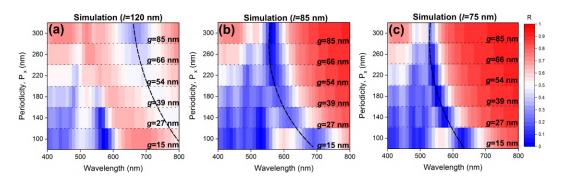


Figure S4: Simulated 2D reflectance map showing the effect of lattice period, P_x and film/nanorod gap, g for nanorod of length (a)l = 120 nm, (b)l = 85 nm and (c)l = 75 nm. The dashed line indicate the shift of the resonance wavelength (dipole mode) as the gap increases.

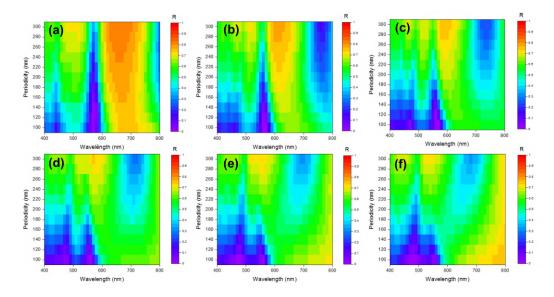


Figure S5: Simulated 2D reflectance map showing the effect of lattice period, P_x for different film/nanorod gap size, g i.e (a) g=10 nm, (b) g=20 nm, (c) g=30 nm, (d) g=40 nm, (e) g=50 nm and (f) g=60 nm