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S.I. SAMPLE PREPARATION

Drop-casting is the most common and straightforward technique to immobilize nanoparti-
cles (henceforth particles) on a grid suitable for transmission electron microscopy (TEM).
However, drop-casting often leads to problems such as weak attachment, particle aggregation
and deposition of debris from the solutes, all of which affect the correlation to TEM of the
optical measurements. To overcome these problems, we developed a sample preparation
method called wet-casting to immobilize metal particles onto a commercial TEM grid with a
silica (SiO2) membrane. Below we describe the wet-casting protocol we used for the silver
nanocubes (henceforth cubes) to complement Sec. 2.1 of the paper. For further details the
reader is referred to Ref. [S1].

Following Ref. [S2], the silica film was functionalized with 3-aminopropyl triethoxysilane
(APTES) to enable binding of the silver cubes to the film. The grid was incubated with an
etching solution made of 5% (v/v) H2SO4 diluted into 30% H2O2, in order to activate the
silica surface by increasing the surface density of silanol groups. We used a 5% concentration
of H2SO4 (instead of the 30% concentration commonly used) to ease the washing of the fragile
grid. After mixing H2O2 and H2SO4, the temperature of the solution was cooled down to
65 °C (instead of the 90 °C temperature prescribed by the standard protocol) to avoid rupture
and deformation of the silica film. The washed, acid-activated grid was then incubated in
1% (v/v) of APTES in ethanol. One should always use fresh APTES (newly purchased or
properly stored in a sealed anhydrous condition), because APTES can readily polymerize
upon contact with water, forming large aggregates. Since the refractive index of APTES
and anisole are similar, such aggregates are hardly noticeable during optical measurements
with anisole immersion, but they are highly detrimental to the optical measurements in air,
and to the subsequent TEM imaging. Additionally, to remove residual aggregates before use,
the APTES stock was centrifuged at high speed (20k relative centrifugal force for 10min) to
precipitate the debris before dissolving it in ethanol for functionalization.

Fig. S1 shows that the wet-casting protocol yields a rather homogenous particle density on
the silica surface. The cubes are stably immobilized onto the film via APTES functionalization,
so that their positions are the same after optical measurement and TEM. Thanks to such
strong particle attachment, the sample grid can be washed with deionized water and organic
solvents such as anisole, ethanol and acetone, which allows us to correlate TEM imaging
and optical measurement in different environments. In contrast, we found that wet-casting
without APTES functionalization leads to particles being removed by anisole immersion.
Both the dark-field images (Fig. 1) and the TEM images (Fig. 2) reported in the paper show a
film surface largely free from debris. Moreover, the sample grid was stable in TEM at various
projection angles, indicating there are no decomposing organic compounds deposited on the
film surface. In contrast, we found that drop casting and drying results in the deposition
of debris, which can cover the cubes and influence their optical properties in an ill-defined
manner. After TEM characterization, dark circles can be seen around the imaged particles,
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Figure S1. Optical transmission images of 75 nm edge silver cubes wet-cast on a silicon-supported
40 nm SiO2 / 200 nm Si3N4 TEM grid (Ted Pella, Inc. 21530-10) functionalized with APTES. In
the visible 50 µm sized windows the Si3N4 layer is removed, leaving the SiO2 membrane exposed.
Optical transmission micrographs were taken before (left) and after (right) TEM imaging. The
arrows indicate particles imaged with TEM.

as highlighted by the arrows in Fig. S1. We ascribe these to damage of the SiO2 membrane
upon the prolonged exposure to the intense (200 kV) electron beam. On the other hand, we
did not notice morphological changes of the cubes during TEM imaging, see Ref. [S1].

Optical measurements require that single particles are separated by few times the optical
resolution, that is, few µm in the visible range. On the other hand, to identify the cubes in
TEM imaging, a magnification of at least 2500 is required, corresponding to a field of view of
at most 5× 5 µm2, within which several cubes should be visible to recognize a configuration
pattern. These two requirements are fulfilled for particle densities between 0.01 and 0.2 µm−2.
We are able to control the particle density by varying the concentration of the incubation
solution, as shown in Fig. S2. The density was assessed by counting the bright spots in a
dark-field (DF) scattering image. We note that most spots are green to yellow with a medium
brightness, which are found in TEM to be single isolated cubes, while the occasionally
observed red spots are found to be bipyramids, seemingly contained in the cube solution.
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Figure S2. Panels (a)–(c): DF microscopy images in anisole of the sample grids, prepared by
wet-casting 9 µl of suspension with various concentrations of 75 nm silver cubes in water. Scale bars
are 10 µm. The images contain four SiO2 (silica) square windows of 50 µm side length, supported
by a Si3N4 mesh. The wet-cast solution concentrations are quantified using the optical density
(OD) of the suspension for 1 cm path length at λ = 515 nm, and the conversion factor 3.6× 108

cubes per mL and OD stated in the manufacturer data sheet. (a) 0.016OD, corresponding to a
concentration of 5.8× 106 ml−1; (b) 0.08OD and 2.9× 107 ml−1; (c) 0.16OD and 5.8× 107 ml−1.
The number of particles in each silica window of 2.5× 103 µm2 area were counted using the find
maxima plug-in of the software ImageJ, resulting in surface densities of (a) 8.3× 10−3 µm−2; (b)
50.1× 10−3 µm−2; (c) 95.0× 10−3 µm−2. These values are plotted in panel (d), and highlight a
linear scaling of 0.6 /OD/µm2 from optical to surface density.
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S.II. EXCITING ELECTRIC FIELD IN A THREE-LAYERED MEDIUM

As discussed in the paper, numerical simulations play a twofold role in this work: They are
instrumental to the quantitation of the optical cross sections, as well as serve as a reference
for comparing quantitative measurements against. In sections S.II and S.III we provide
details of the model we use to simulate absorption and scattering of a single nano-object
under plane wave (PW) illumination. In sections S.IV to S.VI we discuss how multiple PW
simulations can be combined analytically to model accurately the high-numerical aperture,
incoherent illumination of our microscopy experiments.

We solve the frequency domain formulation of the electromagnetic problem using Comsol
Multiphysics®, a commercial software implementing the finite element method. The scattered
field formalism commonly adopted for scattering problems relies on the decomposition of
the total electric field into an exciting and a scattered component: Etot = Eexc +Esca. The
solver computes Esca given Eexc, which is defined as the field in the absence of the scatterer.
It is common modeling practice to compute Eexc through a preliminary solving step where
the particle volume is replaced by the surrounding medium, except for the simplest case of a
PW propagating through a homogeneous medium. In view of the large number (∼105) of
simulations required by our analysis, it is more expedient to input the electric field via an
analytic expression. We already used this approach in a previous work [S3] to simulate the
optical cross section of particles deposited on an optically-thick substrate, and observed a
speed up by a factor 5 to 10 on comparison to the two-step solving scheme. In the experiments
presented in this work, the particles are placed on a TEM grid with silica windows of 40 nm
thickness, and therefore the simulation volume includes two planar interfaces, namely both
sides of the silica film. Below we derive the analytic expression of Eexc in such a three-layered
dielectric medium illuminated by a PW having an arbitrary direction of incidence.

A. Formulation in spherical coordinates

The geometry considered and the notation adopted are summarized by Fig. S3. The
problem can be approached by expressing the electric field in each medium as the sum
of a transmitted wave propagating forward (subscript f) and a reflected wave propagating
backward (subscript b)

E1 = E1,f,s +E1,b,s +E1,f,p +E1,b,p, (S1-1)
E2 = E2,f,s +E2,b,s +E2,f,p +E2,b,p, (S1-2)
E3 = E3,f,s +E3,f,p. (S1-3)

The subscripts p and s denote the field components parallel and perpendicular to the plane
of incidence, which is identified by the wavevector and the normal to the interfaces. Due to
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Figure S3. Sketch of the simulated geometry in the absence of the scatterer. Three dielectric media
of refractive indices n1, n2, and n3 are separated by two parallel planar interfaces at z = 0 and
z = −h. Illumination comes from medium 1 and collection occurs in medium 3, while medium 2
represents the optically thin (h = 40nm� λ) particle substrate. The subscripts f denotes forward
propagation for the incident wave in medium 1 and the transmitted one in mediums 2 and 3, while
the subscript b denotes backward propagation for the reflected wave in mediums 1 and 2. The
subscript i, standing for incident, is a shorthand for 1,f. The plane of incidence ϕ = ϕi is shown, so
that the p and s components of the electric field component (which are not mixed by the interfaces)
are respectively parallel and perpendicular to the plane of the page.

the planar symmetry of the problem, the p and s components are not mixed upon reflection
or transmission, and thus form a convenient basis to decompose the fields.

In order to write down the expression of all the terms in Eq. (S1), we need to refer to
a coordinate system, and spherical coordinates (r, θ, ϕ) are an appropriate choice for the
problem at hand. To understand the reason, let us consider the spherical unit vectors written
in Cartesian components

r̂ =


sin θ cosϕ
sin θ sinϕ
cos θ

 , θ̂ =


cos θ cosϕ
cos θ sinϕ
− sin θ

 , ϕ̂ =


− sinϕ

cosϕ
0

 . (S2)

θ̂ and ϕ̂ are respectively parallel and perpendicular with respect to a generic plane of
incidence, namely a plane of constant ϕ. They thus coincide with the unit vectors p̂ and
ŝ defining the orientation of the p and s field components. The observation that the PW
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propagates in a direction perpendicular to both p̂ and ŝ completes the identification of the
two vector triads: (k̂, p̂, ŝ) = (−r̂, θ̂, ϕ̂).

Therefore the field components in Eq. (S1) have the following expression in spherical
coordinates

E1,f,s = Eis ϕ̂(ϕi) exp[−in1k0r̂(θi, ϕi) · r],
E1,b,s = E1bs(θi) ϕ̂(ϕi) exp[−in1k0r̂(π − θi, ϕi) · r],
E1,f,p = Eip θ̂(θi, ϕi) exp[−in1k0r̂(θi, ϕi) · r],
E1,b,p = E1bp(θi) θ̂(π − θi, ϕi) exp[−in1k0r̂(π − θi, ϕi) · r],
E2,f,s = E2fs(θi) ϕ̂(ϕi) exp[−in2k0r̂(θ2f , ϕi) · r],
E2,b,s = E2bs(θi) ϕ̂(ϕi) exp[−in2k0r̂(π − θ2f , ϕi) · r],
E2,f,p = E2fp(θi) θ̂(θ2f , ϕi) exp[−in2k0r̂(θ2f , ϕi) · r],
E2,b,p = E2bp(θi) θ̂(π − θ2f , ϕi) exp[−in2k0r̂(π − θ2f , ϕi) · r],
E3,f,s = E3fs(θi) ϕ̂(ϕi) exp[−in3k0r̂(θ3f , ϕi) · r],
E3,f,p = E3fp(θi) θ̂(θ3f , ϕi) exp[−in3k0r̂(θ3f , ϕi) · r],

(S3)

where k0 = 2π/λ0 is the magnitude of the wavevector in vacuum. Incidentally, Comsol
adopts the electrical engineering sign convention of plane waves exp

[
−i(k · r − ωt)

]
, which

is complex conjugated to what commonly used in optics and in this work; therefore, (S3)
must be conjugated for using in Comsol. The subscript i, standing for incident, has been
introduced as a shorthand for 1f. Note that all the polar angles appearing in Eq. (S3) are
functions of the polar angle of incidence θi alone, thanks to Snell’s law

θ2f = arcsin
(
n1

n2
sin θi

)
,

θ3f = arcsin
(
n1

n3
sin θi

)
.

(S4)

The planar character of the problem implies that the azimuth of propagation ϕi is the same
in all media, and that the field amplitudes appearing in (S3) are independent from ϕi. This
enables us compute them for any given plane of incidence. For the sake of simplicity, let us
then assume without loss of generality ϕi = 0, which entails ky = 0.

Finally, we emphasize that the formalism just established is valid as well in presence of
evanescent waves (that is, non-propagating modes), for which θ is complex and kz becomes
purely imaginary, leading to an exponential decay of the field amplitude away from the
interface.
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B. Computation of the amplitudes

In this section we compute the 8 unknown amplitudes of the electric field terms listed
in Eq. (S3). This is achieved by imposing the appropriate conditions of continuity of the
electric and magnetic field at interfaces between dielectric layers. As already mentioned,
the planar symmetry of the problem enables us to treat separately the p and s component
of the electric field. To unburden the notation, in each subsection the relative polarization
subscript is dropped.

1. Electric field polarized parallel to the plane of incidence (Ep)

We begin by decomposing the electric field into its components parallel (‖) and perpen-
dicular (⊥) to the interfaces, which lie along the Cartesian axes x̂ and ẑ. The magnetic field
is obtained via the relation H = n

µ0c
k̂ ×E, where we replaced µ with µ0 since we deal with

non-magnetic media The fields in media 1, 2, and 3 read

E1 = x̂ cos θi (E1b − E1f)− ẑ sin θi (E1b + E1f) , (S5-E1)

H1 = ŷ
n1

cµ0
(E1b + E1f) , (S5-H1)

E2 = x̂ cos θ2f (E2b − E2f)− ẑ sin θ2f (E2b + E2f) , (S5-E2)

H2 = ŷ
n2

cµ0
(E2b + E2f) , (S5-H2)

E3 = −x̂ cos θ3f E3f − ẑ sin θ3f E3f, (S5-E3)

H3 = ŷ
n3

cµ0
E3f. (S5-H3)

where E. = E. exp(ik. · r). Imposing that E‖ is continuous at the interface z = 0 gives

− cos θiEi e
ikixx + cos θiE1b e

ik1bxx = − cos θ2fE2f e
ik2fxx + cos θ2fE2b e

ik2bxx. (S6)

Due to the translational symmetry of the problem along the interface, Eq. (S6) must hold
for every value of x, requiring kix = k1bx = k2fx = k2bx. The oscillatory terms thereby cancel
out and we are left with

− cos θiEi + cos θiE1b = − cos θ2fE2f + cos θ2fE2b. (S7)

Imposing that H‖ is continuous at the interface z = 0 gives

n1Ei + n1E1b = n2E2f + n2E2b. (S8)
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Imposing that E‖ is continuous at the interface z = −h gives

− cos θ2fE2f e
−ik2fzh + cos θ2fE2b e

−ik2bzh = − cos θ3fE3f e
−ik3fzh. (S9)

Imposing that H‖ is continuous at the interface z = −h gives

n2E2f e
−ik2fzh + n2E2b e

−ik2bzh = n3E3f e
−ik3fzh. (S10)

Eq. (S9) and Eq. (S10) form a linear system in the unknowns E2f and E2b. The solution
obtained by subtracting or summing n2×(S9) to cos θ2f×(S10) is

E2f = n3 cos θ2f + n2 cos θ3f

2n2 cos θ2f
E3f e

ik2fzh e−ik3fzh, (S11-2f)

E2b = n3 cos θ2f − n2 cos θ3f

2n2 cos θ2f
E3f e

ik2bzh e−ik3fzh, (S11-2b)

which relate the amplitude of the electric fields in medium 2 and 3.
We are finally in the position of expressing the amplitudes in medium 2 and 3 as a

function of Ei. To simplify the expressions, let us define the coefficients cij ≡ ni cos θjf . By
substituting the solution (S11) into Eq. (S7) and Eq. (S8) we obtain respectively

−Ei + E1b = E3f e
−ik3fzh

2c21

[
−(c32 + c23)eik2fzh + (c32 − c23)eik2bzh

]
, (S12)

+Ei + E1b = E3f e
−ik3fzh

2c12

[
+(c32 + c23)eik2fzh + (c32 − c23)eik2bzh

]
. (S13)

Eq. (S12) and Eq. (S13) form a linear system in the unknowns E1b and E3f having the
solution

E3f

Ei
= 4c12c21 e

ik3fzh

(c32 + c23)(c12 + c21)eik2fzh + (c32 − c23)(c21 − c12)eik2bzh
, (S14-3f)

E1b

Ei
= (c32 + c23)(c21 − c12)eik2fzh + (c32 − c23)(c21 + c12)eik2bzh

(c32 + c23)(c21 + c12)eik2fzh + (c32 − c23)(c21 − c12)eik2bzh
. (S14-1b)

The amplitudes in medium 2 are found by substituting Eq. (S14-3f) into Eq. (S11)

E2f

Ei
= 2
c22

c12c21(c32 + c23)eik2fzh

(c32 + c23)(c12 + c21)eik2fzh + (c32 − c23)(c21 − c12)eik2bzh
, (S14-2f)

E2b

Ei
= 2
c22

c12c21(c32 − c23)eik2bzh

(c32 + c23)(c12 + c21)eik2fzh + (c32 − c23)(c21 − c12)eik2bzh
. (S14-2b)
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2. Electric field polarized perpendicular to the plane of incidence (Es)

Analogously to Eq. (S5), fields in media 1, 2, and 3 can be decomposed into their
components ‖ and ⊥ to the interfaces as

E1 = ŷ (Ei + E1b) , (S15-E1)

H1 = n1

cµ0

(
x̂ cos θi (Ei − E1b) + ẑ sin θi (Ei + E1b)

)
, (S15-H1)

E2 = ŷ (E2f + E2b) , (S15-E2)

H2 = n2

cµ0

(
x̂ cos θ2f (E2f − E2b) + ẑ sin θ2f (E2f + E2b)

)
, (S15-H2)

E3 = ŷ E3f. (S15-E3)

H3 = n3

cµ0
(x̂ cos θ3fE3f + ẑ sin θ3fE3f) , (S15-H3)

Imposing that E‖ is continuous at the interface z = 0 gives

Ei e
ikixx + E1b e

ik1bxx = E2f e
ik2fxx + E2b e

ik2bxx. (S16)

Like Eq. (S6), this relation must hold for every value of x, leading to kix = k1bx = k2fx = k2bx.
The oscillatory terms thereby cancel out and we are left with

Ei + E1b = E2f + E2b. (S17)

Imposing that H‖ is continuous at the interface z = 0 gives

n1 cos θi(Ei − E1b) = n2 cos θ2f(E2f − E2b). (S18)

Imposing that E‖ is continuous at the interface z = −h gives

E2f e
−ik2fzh + E2b e

−ik2bzh = E3f e
−ik3fzh. (S19)

Imposing that H‖ is continuous at the interface z = −h gives

n2 cos θ2f
(
E2f e

−ik2fzh − E2b e
−ik2bzh

)
= n3 cos θ3fE3f e

−ik3fzh. (S20)
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Eq. (S19) and Eq. (S20) form a linear system in the unknowns E2f and E2b. The solution
obtained by summing or subtracting n2 cos θ2f×(S19) to (S20) is

E2f = E3f

2 ei(k2fz−k3fz)h
(

1 + n3 cos θ3f

n2 cos θ2f

)
(S21-2f)

E2b = E3f

2 ei(k2bz−k3fz)h
(

1− n3 cos θ3f

n2 cos θ2f

)
(S21-2b)

which relate the amplitude of the electric fields in medium 2 and 3.
We are finally in the position of expressing the amplitudes in medium 2 and 3 as a function

of Ei. By substituting the solution (S21) into Eq. (S17) and Eq. (S18) we obtain respectively

Ei + E1b = E3f

2 e−ik3fzh

eik2fzh

(
1 + c33

c22

)
+ eik2bzh

(
1− c33

c22

) , (S22)

Ei − E1b = c22

c11

E3f

2 e−ik3fzh

eik2fzh

(
1 + c33

c22

)
− eik2bzh

(
1− c33

c22

) . (S23)

Eq. (S22) and Eq. (S23) form a linear system in the unknowns E1b and E3f having solution

E3f

Ei
= 4c11c22e

ik3fzh

(c22 + c33)(c11 + c22)eik2fzh + (c22 − c33)(c11 − c22)eik2bzh
, (S24-3f)

E1b

Ei
= (c11 − c22)(c22 + c33)eik2fzh + (c11 + c22)(c22 − c33)eik2bzh

(c11 + c22)(c22 + c33)eik2fzh + (c11 − c22)(c22 − c33)eik2bzh
. (S24-1b)

The amplitudes in medium 2 are found by substituting Eq. (S24-3f) into Eq. (S21)

E2f

Ei
= 2c11(c22 + c33)eik2fzh

(c22 + c33)(c11 + c22)eik2fzh + (c22 − c33)(c11 − c22)eik2bzh
, (S24-2f)

E2b

Ei
= 2c11(c22 − c33)eik2bzh

(c22 + c33)(c11 + c22)eik2fzh + (c22 − c33)(c11 − c22)eik2bzh
. (S24-2b)
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Table S1. TEM characterization of the geometry of the individual cubes used for modelling, as well
as simulated and measured position λd and full width at half maximum ∆d of the D resonance in
anisole. Mean and standard deviation of each quantity across the set of cubes are also given. All
values in units of nm.

Cube# Lx Ly Rc λd(exp) λd(sim) ∆d(exp) ∆d(sim)
1 64.7 66.0 11.2 541 535 106 99
2 77.1 82.5 15.1 567 563 163 164
3 70.7 70.7 13.2 556 543 121 118
4 75.4 71.6 14.1 552 549 139 131
5 83.1 85.2 19.2 580 563 174 177
6 82.8 82.0 17.4 575 563 167 172
7 76.6 78.8 13.3 573 562 162 154
8 73.9 72.5 13.9 559 547 127 129
9 69.6 69.8 16.8 542 529 110 107
10 81.4 82.7 17.7 576 560 163 167
11 70.5 69.6 12.4 555 543 121 117

mean 75.1 75.6 14.9 561 551 141 139
stdev 5.9 6.7 2.5 14 12 25 28

S.III. MODEL GEOMETRY

Fig. S4 shows the model geometry with a typical mesh employed by the numerical solver.
The geometry is built entirely in Comsol by assembling primitive geometric shapes. The
investigated “cubes” are represented as rectangular cuboids with unequal edge lengths (i. e.
face-to-face distances) all close to the nominal 75nm size. The edge lengths measured with
TEM are reported in Table S1 and deviate within ±10 nm from the nominal value. The
length Lz along the TEM axis cannot be assessed in our electron micrographs, and is taken
as the arithmetic average of Lx and Ly. The cuboid edges and corners are rounded by
cylinders and spheres, with radii of curvature Rc ranging from 11 to 19nm, see Table S1. The
simulation volume is approximately halved by a h = 40 nm thin dielectric slab perpendicular
to z representing the silica membrane of the TEM grid. The slab partitions the immersion
medium (anisole or air in our experiments) with refractive index n1 = n3. The cube lies
flat on this membrane (on the z > 0 or z < 0 side for anisole or air respectively) near the
center of the simulation volume. The simulation volume is a sphere large enough for its
boundaries to be at least λ/(2n1) away from the cube surface—enough to put them outside
the so-called reactive near-field region of the scatterer. The simulated volume is encircled by
a perfectly matched layer (PML) of homogeneous thickness λ/(2n1) which absorbs efficiently
the scattered light, thereby acting as an open boundary for radiation and mimicking an
infinite simulation space.

We refined the user-controlled mesh until the optical cross section values converged within
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a 1% tolerance. This ensures that the simulation results are sufficiently independent of
meshing, so that the dominant source of uncertainty is the limited knowledge of the system
properties (geometry and material specifications). Specifically, such convergence occurs for
a maximum mesh element size of 14 nm in the nano-object volume. In each medium the
element size is capped to λ/n/5 to ensure a fine spatial sampling of the electromagnetic field.
The PML is meshed with 5 elements in the radial direction, as is recommended practice for
this kind of simulations. With the meshing described, the simulations have approximately
3× 105 degrees of freedom and solve in about 15 s (including all post-processing) on a modern
workstation (Intel Core i7-5830K CPU).

In the paper we consider several superficial layers wrapping the silver core of the cube;
namely, a surfactant, a sulfidation or oxidation, and a contamination layer. Fig. S5 depicts
the geometries corresponding to the various simulated configurations, and in particular the
relative disposition of the layers when more than one are present. The layers are modeled
with a homogeneous thickness, except for the contamination layer, which is absent on the
face in contact with the silica membrane, see panel c. The surfactant is always present and
has a fixed thickness t = 2 nm. The sulfidation or oxidation layer derives from a chemical
modification of silver; it is therefore placed within the surfactant shell, inside the cube size L.
In contrast, the contamination layer is placed on the outer side of the surfactant, and its
thickness is not included in the cube size.

Figure S4. Model geometry with a typical mesh employed by the numerical solver. Left: Global
view; right: close-up on the cube. The PML is colored in blue, the silica membrane in yellow, the
immersion medium in white below the membrane and hidden above to show the cube, in gray, of
L = 75 nm edge length and Rc = 15 nm edge rounding. A detailed description is given in the text.
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Figure S5. Geometry of the nano-object used for numerical modeling. Left: Side view; right:
off-axis view. The colors indicate different materials. White: immersion medium (air or anisole);
yellow: silica; grey: silver; pink: silver sulfide or oxide; green: surfactant (PVP); red: organic
contaminant. Panel (a) depicts the configuration used for measurements in anisole (with the
cube placed above the silica membrane), whereas (b) and (c) depict the configuration used for
measurements in air.
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Figure S6. Sectional view of a typical Köhler illumination set-up for micro-spectroscopy experiments.
The sketch depicts the main geometrical features associated with an aplanatic condenser lens
(double arrow) discussed in the text. The polar angle of incidence θi in the magnified insets (b) and
(c) is chosen larger that the illumination range in (a) for clarity.

S.IV. INCOHERENT MICROSCOPE ILLUMINATION

In our experiments, incoherent light is focused by a high numerical aperture (NA) condenser
lens on the sample, which is thereby illuminated by a range of directions of incidence, as
depicted in Fig. S6a. Owing to the symmetry around the optical axis of the microscope,
we will refer in the following to this range as to the illumination cone. Describing such
excitation as a plane wave (PW) impinging perpendicularly onto the sample plane—a
common approach to numerical modeling in the nanoplasmonics field—can provide insight
on the spectral position and linewidth of the resonant modes of the investigated system,
but is not accurate enough to reproduce quantitatively the cross section magnitude and the
angular distribution of light scattered to the far-field. For instance, the axial polarisation
component introduced by illumination at finite angles of incidence is not accounted for.
We therefore develop in this section a mathematical description of high NA, incoherent
illumination. In the following sections S.V and S.VI we rely on this description for the cross
section measurements in numerical simulations and quantitative data analysis.

A. Analytical description

The scientific-grade condenser lens we use is to a good approximation an aplanatic optical
system (henceforth aplanat), that is, free from spherical aberration and coma. An aplanat
transforms the flat wavefront of a collimated beam in the back focal plane (BFP) into a
hemispherical wavefront Σ (often called the front principal “plane”) converging at the front
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focal point F where the sample is placed, as depicted in Fig. S6a. In our case, however, the
illumination originates from an incoherent source and therefore does not form a coherent
wavefront in the BFP, nor a point spread function (PSF) in the front focal plane (FFP).
In the Köhler illumination scheme we adopt, the coherence length in the BFP is given by
the diffraction limit of the illuminated region Affp in the FFP, which is an image of the
field diaphragm. In our experiments, Affp has a diameter of 500 µm, that is, three orders of
magnitude wider than the diffraction-limited PSF size λ/NA for the full condenser NA = 1.34.
Accordingly, the coherence length in the BFP is three orders of magnitude shorter than the
size of the BFP, which is 28mm. Now, each of these small coherence patches in the BFP
corresponds to a well-defined direction of incidence onto the FFP, identified by the polar
angles (θi, ϕi), where the subscript i stands for “incidence” and denotes coordinates and
quantities related to the illumination. Therefore, we describe the microscope illumination
as an incoherent superposition of PWs having the form derived in Sec. S.II, and impinging
onto the sample with directions (θi, ϕi) contained within the illumination cone. In the rest of
this section, we derive the dependence on θi of the power dPpw and intensity dIpw carried by
each of these PWs.

Let the effective focal length of the condenser (which is the radius of Σ in Fig. S6a) be
fni, where ni is the refractive index of the medium filling the FFP space. Note that in our
apparatus fni = 10.5mm is twenty times larger than the size of the illuminated region, so
that the illumination in the BFP of the condenser is still collimated to a small angular range
of approximately 50mrad. Now, each PW constituting the illumination impinges from a
well-defined direction given by the small angular range dΩi, which identifies an element dΣ of
the surface Σ, where the PW can be thought of originating from. The small element of area
dAbfp in the BFP corresponding to dΣ shrinks towards the edges of the BFP as illustrated
by the geometric construction in Fig. S6b

dAbfp = cos θi dΣ = (fni)2 cos θi dΩi = (fni)2 cos θi sin θi dθi dϕi . (S25)

The cos θi factor thereby introduced is characteristic of aplanats and is sometimes referred to
as the aplanatic apodization cosine.

The result (S25) can also be derived from Abbe’s sine condition

ρi = fNAi = fni sin θi (S26)

which relates radial position ρi in the BFP and polar angle of incidence θi in the FFP
for an aplanat—and in fact prescribes that the principal plane Σ is a sphere. As for the
azimuth ϕi, it is conserved across the condenser since we only consider here axially-symmetric
optical elements. Eq. (S25) is obtained by differentiating dAbfp = ρi dρi dϕi according to
Eq. (S26). Incidentally, we observe that the quantity n2 cos θ sin θ dθ is conserved across a
planar interface as a consequence of Snell’s law. This has allowed us to simplify the discussion
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by disregarding the interfaces between the condenser immersion medium ni and the top
sample layer n1.

In a ray picture, the plane wave power dPpw through dΣ is the same power dPbfp crossing
dAbfp, and thus Eq. (S25) yields

dPpw = dPbfp = Ibfp dAbfp = Ibfp(fni)2 cos θi sin θi dθi dϕi (S27)

where Ibfp is the illumination intensity over the BFP, which is assumed to be constant. As
discussed above, under the Köhler illumination scheme employed in our microscope, the
illuminated region Affp of the FFP is the image of the field aperture and is the same for all
directions of incidence. This implies that the plane wave elements have a wavefront of size
Apw which, according to the geometry illustrated in Fig. S6c, is given by Apw = Affp cos θi,
reduced by the beam squeezing cosine with respect to Affp. This expression of Apw can be
used to calculate the intensity dIpw of the plane wave

dIpw = dPpw

Apw
= Ibfp dAbfp

Affp cos θi
= Ibfp

Affp
(fni)2 sin θi dθi dϕi (S28)

where the expression (S25) of dAbfp has been substituted in the last equality.
Let us summarize the main results obtained in this section. According to Eq. (S27),

the plane wave power dPpw ∝ cos θi dΩi decreases as θi increases, as ruled by the aplanatic
apodization cosine. Eq. (S28) shows that the plane wave intensity dIpw ∝ dΩi is instead
independent of the illumination direction: This is a non-trivial consequence of the exact
compensation between the aplanatic apodization cosine and the beam squeezing cosine under
the Köhler illumination scheme.

B. Set-up-specific corrections

There are a few considerations specific to our set-up which can be included as corrections
to the rather general analytical description outlined above. First, the illumination is not
completely homogeneous in the BFP as assumed above, due to a non-ideal performance of
the diffuser. Specifically Ibfp(ρi) drops towards the edges of the BFP, down to approximately
85% of the intensity in the center. Second, the transmittance of the condenser drops steeply
for NAi > 1.1. We ascribe this behavior to stronger reflections from the internal optical
interfaces at higher angles of incidence. Both mechanisms—and the second to a larger
extent—contribute to diminish dIpw at large θi. We have characterized experimentally these
effects and discussed them in the supporting information of Ref. [S3]. For the purposes of
this work, we limit ourselves to reproduce in Fig. S7 the measured angular dependence of the
intensity impinging on the sample, whose trend is explained by the considerations above.

The sample mounting we used for experiments in air features an interface between the
glass slide and the top sample layer n1, see Fig. 1. This interface is not included in the
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numerical simulations as it is ∼ 100λ away from the nano-object; therefore the additional
angular dependence of Ipw on θi due to reflection losses has been included by hand. For
unpolarized illumination, the dependence is given by the average of the Fresnel transmittance
of the glass/air interface for p and s polarisation: T (θi) = (Tp + Ts)/2. Qualitatively, the
stronger reflection from the interface at large angles dims the illumination at high NAi.

For notational simplicity, all the corrections affecting the angular dependence dIpw(θi)
can be lumped into an angular efficiency Ξ(θi). For the effects considered in this section, its
explicit expression would be Ξ = (dIpw/ dΩi)× T . The corrected form of Eq. (S28) for our
set-up thus reads

dIpw = Ibfp

Affp
(fni)2 Ξ(θi) sin θi dθi dϕi . (S29)

S.V. QUANTITATIVE CROSS SECTION MODELING

The optical cross sections and the angular distribution of scattered light are computed
numerically for each cube with the numerical model described in Sec. S.III. The excitation
in these simulations is a PW with a given direction of incidence (θi, ϕi), whose analytical
expression in a three-layer medium we derived in Sec. S.II. However these numerical results
cannot be directly compared to the experimental measurements, since the illumination cone
produced by a high NA lens contains a broad range of directions, as already discussed
above. Let us therefore distinguish the two cases, and use superscripts to denote the type
of excitation, so that σpw and σl are the cross section under plane wave and microscope
illumination respectively. The superscript l indicates a specific illumination cone, determined
by the minimum and maximum polar angle of illumination θli and θ

l

i. Specifically, our
quantitative method is based on correlating a bright-field (BF) and a dark-field (DF)
measurement, so that l ∈ {BF, DF}. In this section, we employ the mathematical description

Figure S7. Normalized illumination
intensity focused on the sample by
the condenser as a function of the
numerical aperture of illumination
NAi, measured under the same con-
ditions as the experiments presented
in this work. The solid line is the
polynomial fit to the data used for
analysis. The vertical dashed lines
at NAi = 1.34 indicate the nominal
condenser aperture.
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of the microscope illumination developed in Sec. S.IV to express σl in terms of σpw and
thereby relate simulated and measured cross sections.

Optical cross sections are defined as the power P removed from the exciting electromagnetic
radiation by a given optical process divided by the incident intensity I0: σ ≡ P/I0. When the
excitation is a single mode—such as a plane wave or a Gaussian beam—the identification of
I0 is straightforward; but in our case of incoherent, high-NA illumination, it is less obvious.
We have taken as a reference the intensity I lffp incident on the FFP, so that the cross section
is defined as σl ≡ P l/I lffp. This seems the most natural definition in microscopy experiments,
where the FFP is imaged onto the sensor and hence the signal measured in transmission is
proportional to I lffp. Moreover, this definition reduces to the usual plane wave definition in
the limit of small illumination NAs.

Now, I lffp is the sum of the small intensity contributions dI lffp = cos θi dIpw of all the PWs
composing the illumination cone. Note that the intensity projected onto the FFP is lower than
the PW intensity Ipw by a factor cos θi according to the geometric construction in Fig. S6c.
Similarly, P l is the sum of the small power contributions dP l = σpw(θi, ϕi) dIpw removed
from all the PWs composing the illumination cone. Putting together these considerations
one has

σl ≡ P l

I lffp
=
∫
l σ

pw(θi, ϕi) dIpw∫
l cos θi dIpw

. (S30)

We emphasize that it is correct to add the PW contributions since they are incoherent to
each other and thus do not interfere. Finally, since we simulated σpw as a function of the
direction of incidence, it is convenient to recast the integral (S30) over the angular variables
using the last form of Eq. (S29)

σl =
∫ θl

i
θl

i

∫ 2π
0 σpw(θi, ϕi) Ξ(θi) sin θi dθi dϕi∫ θl

i
θl

i

∫ 2π
0 cos θi Ξ(θi) sin θi dθi dϕi

. (S31)

This formula can be used to compute the simulated cross section under microscope illumina-
tion, to be directly compared with the experimental spectra. Often the symmetries of the
investigated system (excitation + nano-object) can be exploited to reduce the integration
domain and hence the number of simulations required without loss of information. Specifically,
the cubes under unpolarized illumination investigated in this work display an eight-fold sym-
metry and it is therefore sufficient to cover the azimuthal domain ϕi ∈ [0, π/4]. The directions
of incidence we averaged with Eq. (S31) are determined by a square grid in the BFP of the con-
denser, which is identified by the NA coordinates (NAx,NAy) = (ni sin θi cosϕi, ni sin θi sinϕi).
The grid has 13 points along the coordinate axes of the BFP (which has a radius of ni−0.01),
corresponding to steps in NA of 0.2517 for measurements in anisole (ni = 1.52) and 0.1650
for measurements in air (ni = 1.00).

For averaging directions of incidence equidistant in NAx,NAy (rather than in θi, ϕi) the
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integration must be recast in terms of dAbfp = f 2 dNAx dNAy by substituting into Eq. (S30)
the second to last expression of (S28)

σl =
∫
Al

bfp

[
σpw(θi, ϕi)/ cos θi

]
dAbfp∫

Al
bfp

dAbfp
=
〈
σpw

cos θi

〉
Al

bfp

(S32)

which, for simplicity, does not include the set-up specific corrections introduced in Sec. S.IVB
(i. e. Ξ = 1). Notably, Eq. (S32) offers itself to a rather straightforward interpretation: σl is
the average of σpw over the illuminated region Albfp of the BFP, weighted by cos θi to account
for the projection of the incident intensity onto the FFP. Effectively, the way referencing is
performed in experiments enhances the contribution of high NAs and thereby brings about
σl > σpw, as if the shadow projected by the nano-object onto the FFP was measured (dotted
orange line in Fig. S6c). By virtue of this analogy, we call such dependence of the measured
cross section on the illumination the long shadow effect. We have verified experimentally this
effect in Ref. [S4], and observed a good agreement with our theoretical predictions.

S.VI. QUANTITATIVE CROSS SECTION MEASUREMENT

Our group has recently reported in Ref. [S3] an experimental method for measuring
quantitatively —that is, in absolute units— the cross sections of optical scattering and
absorption of a single nano-object (henceforth object). In this method, the optical signals
detected experimentally are quantified into cross sections relying on the knowledge of four
parameters, see Eq. (7) in Ref. [S3]. In this section we describe how these parameters are
calculated for the cubes investigated in this work. Note that all parameters are wavelength
dependent and calculated accordingly, but this is omitted to unburden the notation.

A. Scattering parameters ηl and ζ

ηl ≡ P l
obj/P

l
tot is defined as the ratio of the scattered power collected by the objective

to the total scattered power. ζ ≡ P bf
tot/P

df
tot is defined as the BF-to-DF ratio of the total

scattered power. The power scattered within a certain directional range can be written as an
integral of the angular distribution P lff of power scattered by the object to the far-field

P l
sca(θld, θ

l

d) =
∫ θ

l
d

θl
d

∫ 2π

0
P lff(θ, ϕ) sin θ dθ dϕ (S33)

where the conical range of detection is delimited by the polar angles
[
θld, θ

l

d

]
, while we

assumed full axial collection ϕ ∈ [0, 2π) by the objective. Note that we are reserving the
calligraphic glyph P to angular power densities. Let θobj = π − arcsin(NAobj/n3) be the
polar angle defining the acceptance of the objective of NA = NAobj in medium 3 (where the
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integration occurs). The scattering parameters defined above can be expressed in terms of
the integral (S33) as

ηl = P l
sca(θobj, π)
P l

sca(0, π) and ζ = P bf
sca(0, π)
P df

sca(0, π) . (S34)

In Ref. [S3] P lff is computed analytically by describing the object as a collection of
dipoles with orientations determined by the illumination cone. This approach simplifies
the automation of the analysis, and thus the usage of the method. On the other hand,
several approximations are involved in the dipole representation. Instead, in this work, P lff is
computed using the far-field transform built in Comsol so to achieve the widest applicability
domain and best accuracy. In particular, this approach is also appropriate for larger objects
(i. e. of size & λ/10) where the electrostatic approximation would not be accurate, and does
not resort to dipole tensorial forms of the polarisability of the object. We have already
calculated in Sec. S.II the analytical form of the exciting field Eexc to be used in simulations
with PW illumination. Following the blueprint laid down in Sec. S.IV, we reproduce the
incoherent microscope illumination by averaging the results of many PW simulations with
directions of incidence spanning the experimental illumination cone. Let us now show in
detail how this scheme applies to the calculation of the scattering parameters.

In each direction in space identified by the polar angles (θ, ϕ), the radiated power density
P lff is the sum of all PW contributions Ppw

ff within the illumination cone l

P lff =
∫
l
Ppw

ff
dIpw

I0
(S35)

where I0 is the intensity of the exciting PW in the simulations. The integral can be rewritten
in terms of the illumination angular variables θi, ϕi via Eq. (S29)

P lff(θli, θ
l

i) ∝
∫ θ

l
i

θl
i

∫ 2π

0
Ppw

ff (θi, ϕi) Ξ(θi) sin θi dθi dϕi (S36)

where we have omitted all constants since the scattering parameters (S34) are computed as
ratios of the integral (S33). As already discussed with reference to Eq. (S31), the azimuthal
integration domain can be reduced by exploiting the symmetry of the investigated system.
Eventually, the scattering parameters are computed by substituting Eq. (S36) into Eq. (S33),
and then into Eq. (S34).

B. Illumination parameters ξ and τ

Quantitative cross section measurements require as well two illumination parameters,
which depend exclusively on the illumination configuration of the experiment, but not on the
optical properties of the measured nano-object.

The first parameter, called ξ, is defined as the BF-to-DF ratio of the reference power I lffp.
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This can be written in the same way as the denominator of Eq. (S30)–(S31) so that

ξ ≡ Ibf
ffp
Idf

ffp
=
∫ θbf

i
θbf

i
cos θi Ξ(θi) sin θi dθi∫ θdf

i
θdf

i
cos θi Ξ(θi) sin θi dθi

(S37)

where we have exploited the axial symmetry of the illumination to remove the integration
on the azimuthal coordinate ϕi. Note that if the set-up-specific corrections introduced in
Sec. S.IVB are not taken into account, Eq. (S37) reduces to a simple analytical expression

ξ

∣∣∣∣
Ξ=1

= sin2 θ
bf
i − sin2 θbf

i

sin2 θ
df
i − sin2 θdf

i
= Abf

bfp
Adf

bfp
. (S38)

In the last equality we highlighted that ξ is the ratio of the illuminated areas in the BFP:
This occurs because without corrections Ibfp is homogeneous over the condenser aperture in
the BFP, and the condenser has a flat angular response.

As discussed in Sec. S.V, under microscope illumination the cross sections are referenced
to the intensity I lffp incident on the FFP in medium 1. The transmission signal of an empty
region of the sample measured in a BF configuration is proportional to (Ibf

ffp)ff
3 , which is

the intensity traversing the FFP transmitted to medium 3 and propagating to the far field
(FF). These two intensities are related via the second illumination parameter defined as
τbf ≡ (Ibf

ffp)ff
3f /(Ibf

ffp)i, whereby the transmittance of the sample grid is accounted for. Now,
for each PW of the illumination cone, the ratio of transmitted to incident intensity is

|t13|2 ≡
(dIpw)3f
(dIpw)i

=
(dIpw)3fp + (dIpw)3fs

(dIpw)ip + (dIpw)is

 = n3

n1

[
|E3fp|2 + |E3fs|2

|Eip|2 + |Eis|2

]
(S39)

with the field amplitudes computed in Sec. S.II. In the second equality of Eq. (S39), the
p and s polarized contributions have been averaged to reproduce unpolarized illumination.
Eventually, the analytical expression of τbf is the sum over the BF illumination cone of all
incoherent PW intensity contributions projected onto the FFP

τbf =
∫

bf Re(cos θ3f)(dIpw)3f∫
bf cos θi dIpw

=
∫ θbf

i
θbf

i

∣∣t13(θi)
∣∣2 Re(cos θ3f) Ξ(θi) sin θi dθi∫ θbf

i
θbf

i
cos θi Ξ(θi) sin θi dθi

(S40)

where we substituted with Eq. (S39) and Eq. (S29) in the last equality. The real part of
cos θ3f is taken to implement the FF projection, as the cosine is imaginary for evanescent
PWs.
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S.VII. SPECTROSCOPY OF ALL INVESTIGATED CUBES

Fig. 3 of the paper displays the quantitatively measured and simulated optical cross
section spectra of a single exemplary cube (# 4). The same quantities are plotted in the
figures S8–S10 for all the 11 cubes we investigated. The individual TEM micrograph of each
cube is displayed as an inset. In a few cases in anisole, the value ζ/ξ in the analysis was
adjusted slightly to reduce negative absorption values, to compensate apparent variations in
the illumination. The spectra are all rather similar between different cubes, indicating a good
precision (i. e. reproducibility) of the quantitative microspectroscopy. The peak position λd

and the full width at half maximum ∆d of the D resonance in anisole are given in Table S1,
for both experiment and simulation.
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Figure S8. Measured and simulated optical cross section spectra of the investigated cubes 1 to 4,
immersed in anisole (left) or in air (right). The corresponding TEM images are shown as insets.
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Figure S9. Same as Fig. S8, but for cubes 5 to 8.
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Figure S10. Same as Fig. S8, but for cubes 9 to 11.
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S.VIII. CORRELATION OF CUBE-ATTACHED MATERIAL WITH SCATTER-
ING SPECTRA

The TEM images of the cubes in Fig. S8, Fig. S9, and Fig. S10 show some material
adhered irregularly to the cube surface, which could be the tarnish discussed in the main
text. We note that a previous study of photooxidation of Ag NPs showed TEM images with
similar features in the early stages (see Fig. 5a in Ref. [S5]), while sulfidation of Ag cubes did
not produce such irregular features (see Fig. 3a in Ref. [S6]).

Here, we correlate the amount of adhered material, which we hypothesise to be tarnish,
with the scattering cross-section spectra measured in air. To quantify the amount of material,
we threshold the TEM images as exemplified in Fig. S11a for cube 1. We extract the area Ac

of the Ag core using a threshold at 40% of the range between the modes of the brightness
histogram of core and background, while for the area At of the Ag core and tarnish, we use
a threshold of 80% . From these areas, we extract the core size as

√
Ac, and the tarnish

thickness accordingly as (
√
At−

√
Ac)/2. In order to remove the systematic dependencies on

the core size, we describe these by λfit for the peak wavelength λlspr as shown in Fig. S11b,
and by σfit for the corresponding cross-section σdf

sca, as shown in Fig. S11c. Notably, the
tarnish thicknesses extracted are in the range of 1.2-2.5 nm, consistent with the thicknesses
required to explain the spectra as discussed in Fig. 6. While λlspr does not show a correlation
with the tarnish thickness, see Fig. S11d, when removing the core size systematics in the
variation λlspr − λfit, given in Fig. S11e, some correlation is found, however opposite to the
expected trend. σdf

sca does not show a correlation with the tarnish thickness, see Fig. S11f,
and also the normalized cross-section σdf

sca/σfit, given in Fig. S11g, does not show correlation.
We note that the observed material distribution is irregular, and far from a surface layer

of homogeneous thickness. It is therefore expected that the effective tarnish layer thickness
we extract from the TEM images is not accurately representing the effect of the material,
assuming it is tarnish, on the measured cross-section spectra. Specifically, the Q and D
modes have different field distributions across the cube surface, and are thus sensitive to
the detailed three-dimensional arrangement of the tarnish. The rather weak correlations
observed in Fig. S11e and Fig. S11g are therefore expected, even if the hypothesis that the
observed material is tarnish is correct.
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Figure S11. Analysis of tarnish seen in TEM and its correlation with the scattering spectra. a)
Example of procedure to quantify the effective thickness of the tarnish: the TEM image (top) is
thresholded to select the area Ac of the Ag core only (left), and the area At of the Ag core and the
surrounding tarnish (right). b) Peak wavelength λlspr of σdf

sca as function of core size determined
as
√
Ac, with a fit λfit as shown. c) Peak cross-section σdf

sca as function of core size, with a fit σfit
as shown. d) λlspr as function of tarnish thickness determined as (

√
At −

√
Ac)/2. e) Variation

λlspr − λfit as function of tarnish thickness. f) σdf
sca as function of tarnish thickness. g) Normalized

cross-section σdf
sca/σfit as function of tarnish thickness.
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