Electronic Supplementary Information:

Effect of Lattice Mismatch and Shell Thickness on Strain in Core@Shell Nanocrystals

Jocelyn T.L. Gamler,^a Alberto Leonardi,^b Xiahan Sang,^c Kallum M. Koczkur,^a Raymond R. Unocic,^c Michael Engel,^b and Sara E. Skrabalak^{a,*}

Figure S1. TEM images of (A) Pd cubes and (B) Rh cubes used as cores.

^{a.}Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States. E-mail: <u>sskrabal@indiana.edu</u>

^{b.}Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 49b, 91052 Erlangen, Germany

^{c.} Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA

Figure S2. (A) GPA colors maps which correspond to the in-plane strain (ε_{xx}) field from **Figure 3G**. (B) is the line profile of the relative deformation determined by GPA with the line profile locations indicated by the arrow in A where the start of the line profile begins at the black dot and ends at the point of the arrow.

Figure S3. Transversal lattice parameter deformation in Rh@Pt nanocrystals. Variation of the transversal deformation of the lattice parameter along a central line section normal to the surface as a function of the distance from the center for a set of nanocrystals with increasing surface-shell thickness ca. from 0.5 to 9 nm. The profiles have been shifted by the deformation at the center of the nanocrystal, which is shown in the inset.