Mixture effect on ionic selectivity and permeability of nanotubes Supplementary information

Mao Wang,¹ Wenhao Shen,¹ Xue Wang,¹ Gehui Zhang,¹ Shuang Zhao,¹and Feng Liu^{*,1.2}

¹State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 Beijing, People's Republic of China.

²Center for Quantitative Biology, Peking University, 100871 Beijing, People's Republic of China.

Nanopore	Solution conditions	Number of K^+ ions	Number of Ca ²⁺ ions	Number of Cl ⁻ ions
CNT	Single salt solution 1 M KCl	44	0	30
	Single salt solution 1 M CaCl ₂	0	44	74
	Mixed salt solution (1 M KCl and 1 M CaCl ₂)	44	44	118
PET	Single salt solution 1 M KCl	92	0	78
	Single salt solution 1 M CaCl ₂	0	92	170
	Mixed salt solution (1 M KCl and 1 M CaCl ₂)	92	92	262

Table S2 Average permeability of K^+ ions and Ca^{2+} ions of different concentrations in CNTs.

	0.5 M	1 M	2 M	3 M	4 M	0.5 M	1 M	1.3 M
	KCl	KCl	KCl	KCl(*)	KCl	$CaCl_2$	CaCl ₂	$CaCl_2(*)$
Permeability	115	196	547	790	1057	23	16	15
(ions/35 ns)								

* The ionic strength of 4 M KCl solution or 1.3 M CaCl₂ solution is equal to that of the mixed salt solution of 1 M KCl and 1 M CaCl₂.

Time (ns)	K ⁺ _s	K _m ⁺	Ca _s ²⁺	Ca _m ²⁺
Loading	0.13	0.12 (0.18*)	1.17	0.20 (0.61*)
Passing	0.11	0.10	0.50	0.09

Table S3 Average loading time and passing time of K^+ ions and Ca^{2+} ions in CNTs.

* Time elapsed between two subsequently loading ions of the same type.

Fig. S1 Concentration dependence on the loading time. (a-b) The loading time of $K^+(a)$ or $Ca^{2+}(b)$ ions into CNTs in the single salt solution with the concentration of 0.5 M (s_0.5M) and 1 M (s_1M) KCl (a) or CaCl₂ (b), and in mixed salt solution with 0.5 M KCl and 0.5 M CaCl₂ (m_0.5M). The range of *y*-axis is constrained to better view.

Fig. S2 The number of transported ions through nanotubes as a function of the simulation time. (a, b) Ion flux of K^+ (a) and Ca^{2+} (b) ions transporting through CNT. (c, d) Ion flux of K^+ (c) and Ca^{2+} (d) ions transporting through PET nanopores. Solid lines and dash lines denote the single salt solution and mixed salt solution, respectively. (e, f) Representative snapshots of unblocked flow of Ca^{2+} ions (e) corresponding to ① and ② in the linear rising line in (b), and blocked flow of Ca^{2+} ions (f) corresponding to ③ and ④ in the plateaus in (b) in the CNT. The Ca^{2+} ions are shown in red, the Cl⁻ ions are shown in yellow, the charged C atoms are shown in gray.

Fig. S3 Accurate permeability rate of Ca^{2+} ions in single salt solutions may need longer simulation time. (a) Ion flux of Ca^{2+} ions in single slat solution (1 M CaCl₂) during an 80 ns simulation (b) The permeability rate of Ca^{2+} ions slightly decreases in longer time windows.

Fig. S4 The loading time is uncorrelated with the total net charge number inside the CNT. Error bars represent standard errors.

Fig. S5 Comparison of the hydration status of the ions in the bulk (green), and inside CNTs moving (orange) or adsorbed (blue). (a-b) The radial distribution of hydration water molecules of K^+ ions (a) and Ca²⁺ ions (b). (c-d) The accumulated hydration water molecules as a function of the distance from the K⁺ ions (c) and Ca²⁺ ions (d).

.

Fig. S6 Ion flux and selectivity under different charge distributions. (a-c) Ion flux and selectivity of 3 other randomly charged CNTs. (d-f) The charge distribution of the above 3 CNTs. Charged carbon atoms are shown in gray balls.

Fig. S7 Ion flux and selectivity with a reduced surface charge density (a) and electric field (b).

Fig. S8 Ion flux and selectivity of uniformly charged CNTs with different surface charge densities of -0.5 e nm^{-2} (a), -1 e nm^{-2} (b), and -2 e nm^{-2} (c).

Fig. S9 The radial distribution of ions inside the PET nanopore. (a, b) radial distribution of K^+ (a) and Ca^{2+} (b) ions inside the PET nanopore in the single salt solution or mixed salt solution.

Fig. S10 Ion adsorption in PET nanopores. (a) The number of adsorbed K^+ and Ca^{2+} ions in PET nanopores. (b) Scatter plots of adsorption time of K^+ and Ca^{2+} ions in PET nanopores.

Movie S1 22.5 ns simulation of $CaCl_2$ transporting through the charged CNT. The Ca^{2+} and Cl^{-} ions are shown in red and yellow, respectively. The charged C atoms are shown in gray. The snapshots shown in Fig. S1e (2) and Fig. S1f (4) are extracted from this movie at 2.5 ns and 25 ns, respectively.