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1 Analytical Model

Consider a 2-d array of identical, non-magnetic metallic particles, which can be obtained

through the translation of a unit cell with N particles by lattice vectors ~t1 and ~t2. The

position of a particle in the lattice can be determined by

~rjmn = ~rj00 +m~t1 + n~t2, (1.0.1)

where j = 1, ...N and ~rj00 is the position of the j-th particle relative to the cell, and (m,n) =

0,±1,±2 . . . . In this work we use a the spectral representation method1 at the dipole level,

and due to the large interparticle separation distances, modify the interaction terms to
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include long-range radiative terms. The method can be seen as analogous to the coupled

dipole approximation.2 The response of a particle to the local electric field at position ~rjmn

is given via its complex dipole polarizability through equation

~pjmn = α(ω) ~E(~rjmn). (1.0.2)

The electric dipole polarizability of a spherical particle α(ω), can be obtained from Mie

theory3 and is taken as α(ω) = (3ik/2)a1(ω), where a1(ω) is the first order Mie scattering

coefficient.4 The local electric field ~E(~rjmn) is the sum of the external field and the field

due to the dipoles induced on all other particles in the lattice. The latter can be written

using the dipole-dipole interaction matrix,5 which describes the field generated by a dipole

at position ~r and felt by a particle at ~r′, given by

G0(~r, ~r′) =
eikRk2

R

[(
1− 1

(kR)2
+

i

kR

)
I +

(
−1 +

3

(kR)2
− 3i

kR

)
R̂⊗ R̂

]
, (1.0.3)

where R = |~r′ − ~r|. Using Eq. (1.0.3) in Eq. (1.0.2) we obtain

~pjmn = αj(ω)

[
~Eext(~rjmn) +

∑
j′m′n′

G0(~rjmn, ~rj′m′n′)~pj′m′n′

]
. (1.0.4)

where the external field is taken to be a monochromatic plane wave ~Eext = ~E0 exp(i~k·~r−iωt).

Notice that Eq. (1.0.6) can be obtained by generalizing the spectral representation1 in the

dipole approximation to take into account the radiative terms in the dipole-dipole interaction.

Due to the periodicity of the system, Bloch’s theorem guarantees that solutions to

Eq. (1.0.4) must have the form ~pjmn = ~pj00 exp
[
i~k‖ · (m~t1 + n~t2)

]
, where ~k‖ is the projection

of the incident wavevector onto the lattice. Introducing this condition into Eq. (1.0.4), the

number of equations is reduced to

~pj = αj(ω)

[
~Eext(~rj) +

∑
j′m′n′

G̃0
j,j′ · ~pj′

]
. (1.0.5)
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where G̃0
j,j′ =

∑
m,n

G0(~rj00, ~rj′m′n′) exp
[
i~k‖ · (m~t1 + n~t2)

]
. Solutions to Eq. (1.0.5) can be

obtained by

~p =
1

1/α− G̃
~E (1.0.6)

where ~p and ~E are 3N vectors and 1/α and G̃ are 3N × 3N matrices. Notice that when the

real parts of 1/α and G̃ are equal, the real part of the denominator in Eq. (1.0.6) goes to

zero, defining the condition of a surface lattice resonances of the system.6

It is useful to consider the specific case of a non-bravais lattice with honeycomb symmetry,

which can be seen as a superposition of two triangular lattices. Notice that matrix G̃ will

be of the form

G̃ =

 G̃(A,A) G̃(A,B)

G̃(B,A) G̃(A,A)

 (1.0.7)

where G̃(A,A) is a 3 × 3 submatrix which describes interaction between particles of the

same triangular sublattice and G̃(A,B) describes interaction between particles of different

sublattices.

The terms G̃(A,B) can be written in the form:7

Gα,β(A,B) = lim
z→0

(
2πi

Acell

∑
mn

1

kgz

[
k2 − (~gmn + ~k‖)α(~gmn + ~k‖)β

]
ei[(~gnm+~k‖)·~rAB+kgz |z|]

)
(1.0.8)

where α, β = x, y, z, ~rAB is the vector that joins the particles of the different sublattices,

~gmn = m~g1 + n~g2 is a vector of the reciprocal lattice and ~g1, ~g2 are primitive vectors of

the reciprocal space, ~k‖ is the projection of the incident wavevector onto the array, kgz =√
k2 − g2mn and Acell is the area of the unit cell. In Eq. (1.0.8) appears explicitly the form

factor providing a phase difference between the two non-equivalent sublattices. Notice that

from Eqs. (1.0.5)-(1.0.8) it can be seen that the resonant condition Re
[
1/α− G̃

]
will depend

primarily on elements of submatrix G̃(A,A), therefore resonances will correspond to the

symmetries of a triangular lattice. However, matrix elements G̃(A,B) can significantly alter
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the coupling to the different resonant modes present in the system. Eq. (1.0.7) is equivalent

to that obtained using a spectral representation in the dipole approximation,1 with analogous

resonant conditions.

2 Quadrupole Contribution

To further demonstrate the dipolar nature of our SLR and to evaluate the weight of the

quadrupole mode of the individual particle, we calculated the extinction spectrum includ-

ing both dipolar and quadrupolar interaction. Under this approximation, the dipole and

quadrupole moments induced on each particle are calculated taking into account dipole-

dipole, dipole-quadrupole and quadrupole-quadrupole interaction. Eq. (1.0.7) is modified in

order to take into account these new interactions, and is of the form:

G̃ =



G̃p−p(A,A) G̃p−Q(A,A) G̃p−p(A,B) G̃p−Q(A,B)

G̃Q−p(A,A) G̃Q−Q(A,A) G̃Q−p(A,B) G̃Q−Q(A,B)

G̃p−p(B,A) G̃p−Q(B,A) G̃p−p(B,B) G̃p−Q(B,B)

G̃Q−p(B,A) G̃Q−Q(B,A) G̃Q−p(B,B) G̃Q−Q(B,B)

,


(2.0.1)

where G̃p−p are 3× 3 , G̃p−Q are 5× 3 and G̃Q−Q are 5× 5 submatrices that describe dipole-

dipole, dipole-quadrupole and quadrupole-quadrupole interaction respectively. Notice that

Eq (2.0.1) depends only on the geometrical parameters of the system, the wavevector and

wavelength of the incident field. Dielectric parameters of the particles are described by

the electric dipole and quadrupole polarizability,8 and must be introduced to solve for the

induced dipole and quadrupole moments.

The electric field scattered by the induced dipole and quadrupole can be written in the

far field kr � 1 as:8

~Es(~k, ~r) =
k2eikr

r
(I− r̂ ⊗ r̂)

∑
j

e−i
~k·~rj
[
~pj −

ik

6

(←→
Q j · r̂

)]
, (2.0.2)
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where ~pj and
←→
Q j are the induced dipole and quadrupole moments on particle j, and I is

a 3 × 3 identity matrix.8 Eq. (2.0.2) is then used to calculate the extinction, making it is

possible to separate the dipole and quadrupole contributions. These are shown in Fig. S1.

The extinction maps calculated including quadrupole interaction and s-polarazation are also

shown.

Figure S1: Extinction spectrum at normal incidence including dipole-dipole, dipole-
quadrupole and quadrupole-quadrupole interaction.

Figure S2: Extinction map for s-polarization including dipole-dipole, dipole-quadrupole and
quadrupole-quadrupole interaction.

To verify that the near-field results are not significantly different when calculated under

5



the dipole or quadrupole approximations, we show the electric near-field calculated including

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interaction. These fields are

analogous to Figs. 2(d) and 2(f) of the main text. A SLR with a strong quadrupolar

character can be excited by bringing a diffraction edge close to the quadrupolar resonance.

However, the RAs and the SLR studied in this work are very detuned from that resonance.

Figure S3: Electric near-field for normal incidence and s-polarization including dipole-dipole,
dipole-quadrupole and quadrupole-quadrupole interaction for λ = 477 nm (left) and λ = 660
nm (right).

3 Simulations

For the numerical simulation of the extinction we used the Finite Elements Method (FEM)

to solve the Maxwells equations employing the software COMSOL 5.3 with the Wave Optics

package. A 3D simulation box was designed to model the extinction of a honeycomb lattice

as a function of incidence angle and wavelength. We used a rhombic cell accommodating the

two particles of the unit cell and we defined Floquet Periodic Boundary condition on all its

sides. Port Boundary condition are defined at the top and bottom of the cell with Perfectly
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Matched layers (PMLs) behind them. A user-defined plane wave illumination is performed

by means of the port located on the air side of the structure. Zeroth-order transmission is

evaluated with an opposite port located on the substrate side through the built-in S12 matrix

element. The distance between the lattice and the ports must been large enough to avoid

any evanescent field within the modeling domain. In our case the height of the substrate

and air domains was of 850 nm. We checked that all our far field and near field results are

independent on the type of cell used. To do this we compared with a rectangular and a

hexagonal cell also using periodic boundary conditions. The former one contains 4 particles,

while the latter contains 6 times 1/3 of a particle. We crosschecked that our calculation

correctly treats the diffraction orders of the structure by verifying the consistency of the far

and near field results when Periodic Ports and built-in wave excitation are employed.
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4 Experimental and theoretical results

Figure S4: Measured p-polarized extinction as a function of the wavelength and angle of
incidence along the (a) Γ −M and (c) Γ −K trajectory. Simulated p-polarized extinction
as a function of the wavelength and angle of incidence along the (b) Γ−M and (d) Γ−K
trajectory.
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Figure S5: Cross section efficiency calculated by Mie theory (blue curve) and spectral repre-
sentation method (red curve). The main peak corresponds to the dipolar localized plasmon
mode of the nanosphere and it matches well with the one in Fig. 1(b). The only differ-
ence between the two calculations relates to the small peak around λ = 400 nm, which is
associated to an out of plane quadrupole localized plasmon mode.9

Figure S6: Simulated s-polarized extinction map, along the Γ −M trajectory, for the hon-
eycomb lattice homogeneously surrounded, i.e, without air-silica interface.
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Figure S7: Simulated spatial distribution of the normalized electric field amplitude for s-
polarized incident light and for the SLR.
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Figure S8: (a) Surface charge density simulated for p-polarized incident light, at the SLR
wavelength. (b) Calculated and (c) simulated spatial distribution of the normalized electric
field intensity for p-polarized incident light, at the SLR wavelength.
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Figure S9: Calculated spatial distribution of the normalized electric field intensity for p-
polarized incident light, at the SLR wavelength for the non-Bravais lattices with (a) ∆y = 50
nm, (b) ∆y = 100 nm, and (c) ∆y = 150 nm.
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Figure S10: (a) s-polarized extinction spectra calculated at normal incidence for different
∆x.
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Figure S11: Cut of Fig. 2 (c) and (d) along the axis perpendicular to the the incident
electric field. The regions between ±100 nm and ±200 nm corresponds to the position of the
nanospheres. The middle panel is obtained after inclusion of the quadrupole interactions,
which improves the agreement between the calculation and the simulation. As expected, the
only difference between the results obtained under dipole and quadrupole approximation is
the intensity in the close proximity of each sphere.
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