Electronic Supplementary Material

Excellent catalysis of Mn₃O₄ nanoparticles on the hydrogen

storage properties of MgH₂: An experimental and theoretical

study

Liuting Zhang^{a, §}, Ze Sun^{a, §}, Zhendong Yao^{a, §}, Lei Yang^a, Nianhua Yan^a, Xiong

Lu^a, Beibei Xiao^a, Xinqiao Zhu^{b,*} and Lixin Chen^{c,*}

^a College of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, PR. China

^b Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, PR. China

^c State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR. China

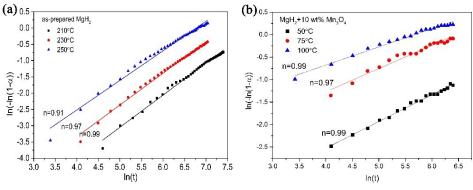


Fig.S1 JMAK plots of MgH_2 and MgH_2+10 wt% Mn_3O_4 composite.

^{*} To whom correspondence should be addressed. Tel: +86 17738406685; E-mail address: <u>zhuxinqiao@zju.edu.cn</u>, <u>lxchen@zju.edu.cn</u>

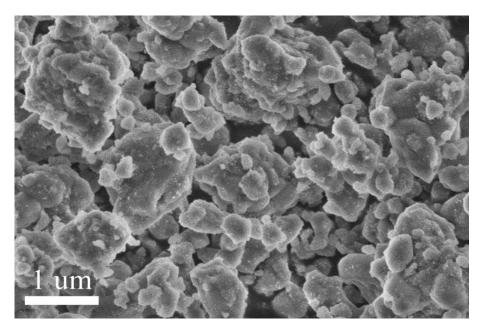


Fig.S2 SEM image of as-prepared MgH₂.

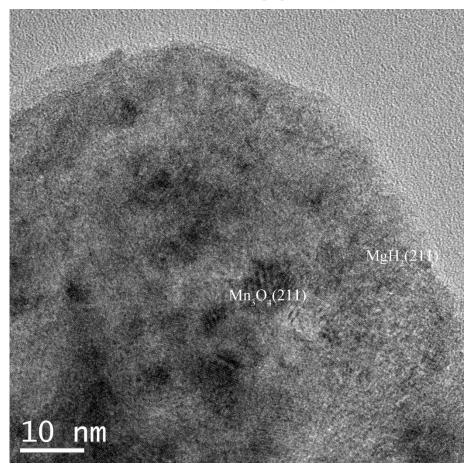


Fig.S3 TEM image of MgH_2+10 wt% Mn_3O_4 composite in ball-milling state.

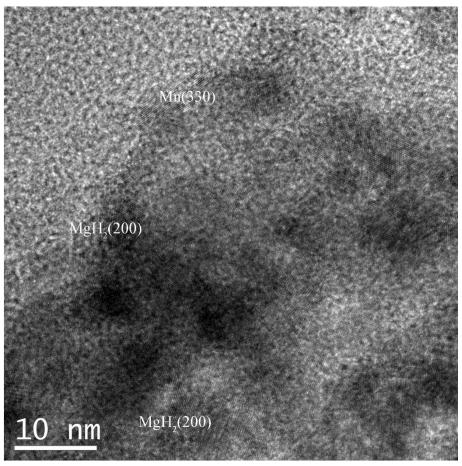


Fig.S4 TEM image of MgH_2+10 wt% Mn_3O_4 composite after 20 cycles.