Supplementary Material

Assessing the role of plasma engineered *acceptor-like* intra- and inter-grain boundaries in heterogeneous WS_2 - WO_3 films on photo-current characteristics

Gopika Gopakumar, Shantikumar V. Nair and Mariyappan Shanmugam* Amrita Centre for Nanosciences and Molecular Medicine Amrita Vishwa Vidyapeetham, Kerala-682041, India *Corresponding author e-mail: *mshanmugham@aims.amrita.edu*

Nanopowder of various functional semiconductors and oxides have recently been demonstrated

in various possible applications including lubricants,¹⁻³ photocatalysis,⁴⁻⁶ and photovoltaics.^{7,8}

The following table lists recently reported nanopowder compositions and their applications.

Nanopowders	Applications	Comments	Reference
MoS ₂	Electrode in solar	Comparable photovoltaic	9, 10
	cells.	performance of solar cells	
		has been reported using	
		MoS_2 as an electrode to	
		replace expensive	
		platinum and other metals	
		used in solar cells.	
MoSe ₂	Electrode in solar	Decreased charge transfer	11, 12
	cells.	resistance in dye sensitized	
	In energy storage	solar cell and improved	
	devices and opto-	photovoltaic performance.	
	electronics.		
WSe ₂ composite	Electrode in solar	Dye sensitized solar cells	13
	cells.	with conversion efficiency	
		of 12.23% was reported.	
WSe ₂	sodium-ion	Showed high discharge	14
	batteries.	capacity along with	
		improved cycling stability	
		due to the buffering effect	

		of the carbon coated on	
		WSe ₂ .	
WO ₃	Pseudocapacitor.	Specific capacitance of	15
		35.70 F/g was reported for	
		Zn–WO ₃ nanopowder.	
WS ₂ -WO ₃	Light-mater	Effect of grain and grain-	Present work
	interaction,	boundary distribution on	
	optoelectronics.	photo-current	
		characteristics of	
		composite WS ₂ -WO ₃ films	
		reported.	

References

- 1. V. An, Y. Irtegov, and C. De Izarra. J. Nanomater 2014 (2014).
- L. Rapoport, V. Leshchinsky, I. Lapsker, Yu Volovik, O. Nepomnyashchy, M. Lvovsky, R. Popovitz-Biro, Y. Feldman, and R. Tenne. *Wear* 2003, 255, 785-793.
- 3. L. Rapoport, N. Fleischer, and R. Tenne. Adv. Mater. 2003, 15, 651-655.
- 4. D. James, and T. Zubkov. J. Photochem. & Photobiol A: Chemistry 2013, 262, 45-51.
- Y. Zhong, G. Zhao, F. Ma, Y. Wu, and X. Hao. *Appl. Catalysis B: Environmental* 2016, 199, 466-472.
- 6. S. V. Vattikuti, and C Byon. Science of Advanced Materials 2015, 7, 2639-2645.
- 7. S. Li, Z. Chen, and W. Zhang. Mater. Lett 2012, 72, 22-24.
- J. Huang, X. Qian, J.Yang, Y. Niu, C. Xu, and L. Hou. *Electrochimica Acta* 2020, 135949.
- N. Huang, G. Li, Z. Xia, F. Zheng, H. Huang, W. Li, C. Xiang, Y. Sun, P. Sun, and X. Sun. *Electrochimica Acta* 2017, 235,182-190.
- 10. W.-H.Jhang, and Y.-J. Lin. Current Appl. Phys. 2015, 15, 906-909.

- X. Yuan, B. Zhou, X. Zhang, Y. Li, and L. Liu. *Electrochimica Acta* 2018, 283,1163-1169.
- 12. A. Eftekhari, Appl. Mater. Today 2017, 8, 1-17.
- Y. Areerob, K.Y. Cho, C.-H. Jung, and W.-C. Oh. J. Alloys & Compounds 2019, 775, 690-697.
- 14. Z. Zhang, X. Yang, and Y. Fu. RSC Adv 2016, 6, 12726-12729.
- R. D. Kumar, Y. Andou, and S. Karuppuchamy, J. Phys. & Chem. Solids 2016, 92, 94-99.