Improved Conductivity and Ionic Mobility in Nanostructured Thin Films via Aliovalent Doping for Ultra-High Rate Energy Storage

Nanoscale Advances

Clayton T. Kacica, Pratim Biswas* Aerosol and Air Quality Research Laboratory Center for Aerosol Science and Engineering Department of Energy, Environmental, and Chemical Engineering Washington University in St. Louis St. Louis, MO 63130 (USA)

Morphology	Dopant	Cycling Rates	Performance	Reference
Solid sphere	Nb	0.1 - 50 C	120 mAh g ⁻¹ at 50 C	$[1]^1$
Solid sphere	Та	0.15 - 20 C	130 mAh g ⁻¹ at 10 C	$[2]^2$
Mesoporous spheres	Zn	0.2 - 30 C	~45 mAh g ⁻¹ at 20 C	[3] ³
Mesoporous spheres	Cr, N	0.1 – 10 C	127 mAh g ⁻¹ at 10 C	$[4]^4$
Nanorod	Ν	0.5 - 20 C	131 mAh g ⁻¹ at 20 C	[5] ⁵
Nanotube	S	0.1 – 10 C	167 mAh g ⁻¹ at 10 C	$[6]^{6}$
Solid sphere	Zr/F	1 – 10 C	~140 mAh g ⁻¹ at 10 C	[7] ⁷
Nanotube	С	70 mA g ⁻¹	~100 mAh g ⁻¹	[8] ⁸
Solid sphere	Sn	$0.1 - 10 \text{ Ag}^{-1}$	~75 mAh g ⁻¹ at 10 A g ⁻¹	[9] ⁹
Nanosheet	Mn	$30 - 500 \text{ mA g}^{-1}$	~150 mAh g ⁻¹ at 500 mA g ⁻¹	$[10]^{10}$
Nanowire	С	0.5 - 10 C	172 mAh g ⁻¹ at 10 C	$[11]^{11}$
Core-shell sphere	N	$0.2 - 2 \text{ A g}^{-1}$	\sim 240 mAh g ⁻¹ at 2 A g ⁻¹	$[12]^{12}$
Nanofiber	Nb	0.05 - 5 C	$23 \text{ mAh g}^{-1} \text{ at } 5 \text{ C}$	$[13]^{13}$
Solid particles	Mo/Nb	$0.1 - 15 \text{ Ag}^{-1}$	$42 \text{ mAh g}^{-1} \text{ at } 15 \text{ A g}^{-1}$	$[14]^{14}$

Supplemental Table S1 Literature review of doped-TiO₂ materials of various morphologies and dopants.

Figure S1 Coulombic efficiencies of batteries over 2000 cycles at a charge rate of 10 C.

Figure S2 Charge/discharge profiles of the 1st, 10th, 100th, and 1000th cycles for the a) 0% Cu, b) 2.7% Cu, c) 5.1% Cu, and d) 7.2% Cu electrodes during cycling at a rate of 10 C.

Figure S3 Nyquist plots of the frequency dependent impedance of the 0% and 5.1% Cu electrodes.

References

- 1. H. Usui, Y. Domi, S. Yoshioka, K. Kojima and H. Sakaguchi, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 6695-6702.
- 2. H. Usui, Y. Domi, K. Takama, Y. Tanaka and H. Sakaguchi, *ACS Applied Energy Materials*, 2019, **2**, 3056-3060.
- 3. Z. Ali, S. N. Cha, J. I. Sohn, I. Shakir, C. Yan, J. M. Kim and D. J. Kang, *Journal of Materials Chemistry*, 2012, **22**, 17625-17629.
- 4. Z. Bi, M. P. Paranthaman, B. Guo, R. R. Unocic, H. M. Meyer Iii, C. A. Bridges, X.-G. Sun and S. Dai, *Journal of Materials Chemistry A*, 2014, **2**, 1818-1824.
- 5. Y. Yang, X. Ji, M. Jing, H. Hou, Y. Zhu, L. Fang, X. Yang, Q. Chen and C. E. Banks, *Journal of Materials Chemistry A*, 2015, **3**, 5648-5655.
- 6. J. Ni, S. Fu, C. Wu, J. Maier, Y. Yu and L. Li, Advanced Materials, 2016, 28, 2259-2265.
- D. P. Opra, S. V. Gnedenkov, S. L. Sinebryukhov, E. I. Voit, A. A. Sokolov, A. Y. Ustinov and V. V. Zheleznov, *Progress in Natural Science: Materials International*, 2018, 28, 542-547.
- 8. J. Xu, Y. Wang, Z. Li and W. F. Zhang, Journal of Power Sources, 2008, 175, 903-908.
- 9. M. Lübke, I. Johnson, N. M. Makwana, D. Brett, P. Shearing, Z. Liu and J. A. Darr, *Journal of Power Sources*, 2015, **294**, 94-102.
- 10. W. Zhang, W. Zhou, J. H. Wright, Y. N. Kim, D. Liu and X. Xiao, ACS Applied Materials & Interfaces, 2014, 6, 7292-7300.
- S. Goriparti, E. Miele, M. Prato, A. Scarpellini, S. Marras, S. Monaco, A. Toma, G. C. Messina, A. Alabastri, F. D. Angelis, L. Manna, C. Capiglia and R. P. Zaccaria, ACS Applied Materials & Interfaces, 2015, 7, 25139-25146.
- 12. M. Ren, H. Xu, F. Li, W. Liu, C. Gao, L. Su, G. Li and J. Hei, *Journal of Power Sources*, 2017, **353**, 237-244.
- M. Fehse, S. Cavaliere, P. E. Lippens, I. Savych, A. Iadecola, L. Monconduit, D. J. Jones, J. Rozière, F. Fischer, C. Tessier and L. Stievano, *The Journal of Physical Chemistry C*, 2013, **117**, 13827-13835.
- 14. D. Bauer, A. J. Roberts, N. Matsumi and J. A. Darr, *Nanotechnology*, 2017, 28, 195403.