Bandgap engineering via Boron and Sulphur doped carbon modified Anatase TiO₂: A

Visible light stimulated Photocatalyst for Photo-Fixation of N₂ and TCH Degradation

Centre for Nano Science and Nano Technology, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751 030, Odisha, India

> *Corresponding author E-mail: paridakulamani@yahoo.com and

> > kulamaniparida@soa.ac.in

Telephone +91-674-2379425, Fax. +91-6 74-2581637.

Figure. S1 XPS survey spectrum of (a) CT, (b) S-CT and (c) B-CT.

Figure. S2 Bandgap energy of (a) CT and (b) S-CT

Urbach energy calculation

Following the mathematics $\alpha = \alpha_0 \exp[E/E_u]$, where α stands for absorption coefficient, E as the energy of photon and E_u represents Urbach energy respectively. ^[1,2] As the absorption coefficient is equal to absorbance (A or F(R)) for solid samples, so α can be substituted by A. ^[2] The Urbach energy was calculated by taking the reciprocal of the slope of the graph that is plotted between lnA vs E.

Figure. S3 Urbach energy (a) CT, (b) S-CT and (c) B-CT.

Figure. S4 EDX of (a) CT, (b) S-CT and (c) B-CT.

Figure. S5 Elemental colour mapping of (a) CT and (b) B-CT.

Catalytic system	Antibiotic type	Degradation%	Light	Time	Reference
			source	period	
Au/B-TiO ₂ /rGO	15ppm TCH	100	300W Xe	60min	3
			lamp		
Cu-	30ppm	100	Open	180min	4
TiO2@functionalized	sulfamethazine		sunlight		
SWCNT					
Al-doped TiO ₂	$(2*10^{-4}M)$	93	(103800	120min	5

Nanoflakes	Fluoroquinolone		lux as per HTC LX102A lux meter		
Co-TNs/rGO	30ppm TCH	60	Halogen, ECO OSRAM 500 W lamp	180min	6
N-doped TiO ₂	$1.0 \times 10^{-2} \text{ mol}$ L ⁻¹ cefazolin	80	5 × 8W blacklight fluorescent lamps	30min	7
Co-doped TiO ₂	10ppm	>90	Xe lamp	240 min of irradiation under UV-C and 300 min under visible irradiation	8
Carbon-sensitized and nitrogen-doped TiO ₂	5ppm	95	LED flexible strip (SMD 5016 water research 45 (2011) 5015 - 5026 5050, 15W)	5h	9
Nitrogen-doped TiO ₂ /diatomite	20ppm	91	150W Xe lamp	90min	10
B-CT	10ppm	95	250W Xe- lamp	60min	Present work

Table. T1 comparison table representing different doped TiO₂ towards antibiotic degradation.

Figure. S6 LC-MS chromatogram of TCH over B-CT.

References

- Choudhury, B.; Chetri P.; Choudhury, A., Annealing temperature and oxygen vacancy dependent variation of lattice strain, band gap and luminescence properties of CeO₂ nanoparticles. *J. Exp. Nanosci.* 2015, *10*,103-114.
- Deng H.; Hossenlopp, J. M., Combined X-ray diffraction and diffuse reflectance analysis of nanocrystalline mixed Sn (II) and Sn (IV) oxide powders. J. M., J. Phys. Chem. B, 2005, 109, 66-73.
- Vinesh, V.; Shaheer A.R.M.; Neppolian, B., Reduced graphene oxide (rGO) supported electron deficient B-doped TiO₂ (Au/B-TiO₂/rGO) nanocomposite: An efficient visible light sonophotocatalyst for the degradation of Tetracycline (TC). *Ultrason. Sonochem.*, **2019**, *50*, 302-310.
- 4. Payan, A.; Isari A.A.; Gholizade, N.; Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO₂@ functionalized SWCNT

ternary porous nanocomposite: Influential factors, mechanism, and pathway studies. *Chem. Eng. J.*, **2019**, *361*,1121-1141.

- Kaushik, R.; Samal, P.K.; Halder, A., Degradation of Fluoroquinolone-Based Pollutants and Bacterial Inactivation by Visible-Light-Active Aluminum-Doped TiO₂ Nanoflakes. *ACS Appl. Nano Mater.*, **2019**, *2*, 7898-7909.
- Alyani, S.J.; Pirbazari, A.E.; Khalilsaraei, F.E.; Kolur, N.A.; Gilani, N., Growing Codoped TiO₂ nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network. *J. Alloys Compd.*, **2019**, *799*, 169-182.
- Gurkan, Y.Y.; Turkten, N.; Hatipoglu, A.; Cinar, Z., Photocatalytic degradation of cefazolin over N-doped TiO₂ under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. *Chem. Eng. J.*, **2012**, *184*, 113-124.
- Çağlar Yılmaz, H.; Akgeyik, E.; Bougarrani, S.; El Azzouzi M.; Erdemoğlu, S., Photocatalytic degradation of amoxicillin using Co-doped TiO₂ synthesized by reflux method and monitoring of degradation products by LC–MS/MS. *J. Dispersion Sci. Technol.*, **2020**, *41*, 414- 425.
- Wang, P.; Zhou, T.; Wang R.; Lim, T.T., Carbon-sensitized and nitrogen-doped TiO₂ for photocatalytic degradation of sulfanilamide under visible-light irradiation. *Water Res.*, 2011, 45, 5015-5026.
- Chen Y.; Liu, K., Preparation and characterization of nitrogen-doped TiO₂/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light. *Chem. Eng. J.*, **2016**, *302*, 682-696.