Electronic Supplementary Material (ESI) for Nanoscale Advances.
This journal is © The Royal Society of Chemistry 2020

S. Alialy, et al.

Supplemental Material: Nonlinear Ion Drift-Diffusion Memristance De-
scription of TiO; RRAM Devices (sample code)

1 #!/usr/bin/env python

2 230

3 File name: testing_params_MM1_tau.py
4 Authors: C. G. Rocha, and K. Esteki
Date created: 10 October 2019

6 Date last modified: 06 February 2020
Python Version: 2.7

w

~

9 This program is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation, either version 3 of the License, or

12 (at your option) any later version.

13

14 This program is distributed in the hope that it will be useful,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

18

19 You should have received a copy of the GNU General Public License

20 along with this program. If not, see <https://www.gnu.org/licenses/>.

21

22 Required packages: numpy, matplotlib, scipy.

23

24 This code is generated for the purpose of testing the output parameters obtained from the
25 nonlinear fitting of systems of ODE equations. For this memristive model case (MMl+tau), the
26 optimized parameters are lambdax, lambday, etal, eta2, eta3, etad4, tau, alphal, betal,
27 gamma, delta, alpha2, beta2, and xO.

28

29

30 Citation:

31 If you use this code in academic publications, please, cite our work appropriately.

32

33 Parameters:

34 DS

35 lambdap, lambdan, etal, eta2, eta3, etad4: float

36 Nonlinear ion-drift parameters in the dynamical state equation

38 tau: float
39 Diffusion rate

41 vmax, freq: float
42 Voltage amplitude (in Volts) and frequency of the input voltage signal

44 alphal, betal: float

45 Current response function parameters (Schottky contribution)
46

47 gamma, delta: float

48 Current response function parameters (tunnelling contribution)
49

50 alpha2, beta2: float

1 Current response function parameters (rectifier contribution)

3 points: int
| Number of points in the timeline (arb. units)

1of4

69
70

N

S BEES TS TS S BN B B |
© W N o « W N

[0

S. Alialy, et al.

5 Returns: three plots: (i) x versus t, (ii) I versus V, and (iii) V versus t

P

importing canonical python libraries
import matplotlib.pyplot as plt

import numpy as np

from scipy.integrate import odeint

State equation dx/dt to be integrated

5 def myFunc(x, t, *args):

’22 After integrated, returns x(t).

Keyword arguments:

t -— time

x —-— internal state variable

*args -- multiple memristive parameters: lambdap, lambdan, etal, eta2, eta3, eta4, tau
*args -- input voltage signal parameters: vmax, freq

2

v = vmax * np.sin(2.0 * freq * np.pi * t)
xdyn = x

if t <= freq/2:

dxdt = (lambdap * (np.exp(etal*v) - np.exp(eta2)) - xdyn/tau) * (1.0 - (2.0*xdyn - 1.0)**2)
else:

dxdt = (lambdan * (np.exp(-eta3+*v) - np.exp(etad4)) - xdyn/tau) * (1.0 - (2.0xxdyn - 1.0)**2)

return dxdt

6 # general parameters for the voltage (sinusoidal) input

vmax = 10.0

. freq = 1.0

parameters taken from the fitting procedure
alphal = 6.82991497

2 betal = 0.10051066

alpha2 = 3.42451238

beta2 = 0.01325593
gamma = 1.6138e-04
delta = 0.99905798

; lambdap = 3.05688105

lambdan = 3.56661637

etal = 0.19781416
eta2 = 0.35545468
eta3 = 0.19863980
etad = 0.53302178

tau = 0.10820846
dxdt_params = (vmax, freq, lambdap, lambdan, etal, eta2, eta3, eta4, tau)

number of points in the timeline

. points = 10000

create a timeline vector
t = np.array([0.0, 1.0])
tspan_vector = np.linspace(t[0], t[1], points)

2 of 4

S. Alialy, et al.

114 # voltage input signal
115 V = vmax * np.sin(freq * 2.0 * np.pi * tspan_vector)

117 # steps in the timeline
118 h = tspan_vector[1] - tspan_vector[0]

120 # initial conditions for the internal state variable
121 x0 = 0.9

123 # integration of the dynamical state equation
124 xs = odeint(myFunc, x0, tspan_vector, args=dxdt_params)

126 # calculating current values from the solution x(t)
127 ic = (1.0 - xs[:,0]) * alphal * (1.0 - np.exp(-betal * V[:])) + xs[:,0] * gamma * np.sinh(delta * V[:]) +
alpha2 * (1.0 - np.exp(-beta2 * V[:]))

120 # plotting instructions

131 # plotting x versus t

132 plt.figure()

133 plt.plot(tspan_vector, xs[:,0], ’r’)
134 plt.xlim(t[0], t[1])

135 plt.xlabel(’t’, fontsize=17)

136 plt.ylabel(’x’, fontsize=17)

137 plt.tight_layout()

139 # plotting I versus V

140 plt.figure()

141 plt.plot(V, ic, ’r’)

142 plt.xlabel(’V’, fontsize=17)
143 plt.ylabel(’I’, fontsize=17)
144

145 # plotting V versus t

146 plt.figure()

147 plt.plot(tspan_vector, V, ’r’)
148 plt.xlabel(’t’, fontsize=17)
149 plt.ylabel(’V’, fontsize=17)
150

151 plt.show()

3of 4

S. Alialy, et al.

The figures below are screenshots of the output of this sample code for the sake of reference. The code
plots z(t) x t, I x V, and V (t) x t. The used parameters were optimized to fit our particular experimental
data of Au-Ti/TiOy/Ti-Au devices in vacuum and at room temperature. These parameters work better
for a single voltage cycle.

“ Figure 1 e
A €9 Q=

1.0+

(4] Figure 2 v~
A € > $Q =¥

%x=0.561926 y=0.680075

Figure 3

It

Ht

A €92 $Q

10.0

7.5

5.0 q

2.5

254

=5.01

-10.0 4

4 0of 4

