
S. Alialy, et al.

Supplemental Material: Nonlinear Ion Drift-Diffusion Memristance De-
scription of TiO2 RRAM Devices (sample code)

1 #!/usr/bin/env python

2 ’’’

3 File name: testing_params_MM1_tau.py

4 Authors: C. G. Rocha, and K. Esteki

5 Date created: 10 October 2019

6 Date last modified: 06 February 2020

7 Python Version: 2.7

8

9 This program is free software: you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by

11 the Free Software Foundation, either version 3 of the License, or

12 (at your option) any later version.

13

14 This program is distributed in the hope that it will be useful,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of

16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 GNU General Public License for more details.

18

19 You should have received a copy of the GNU General Public License

20 along with this program. If not, see <https://www.gnu.org/licenses/>.

21

22 Required packages: numpy, matplotlib, scipy.

23

24 This code is generated for the purpose of testing the output parameters obtained from the

25 nonlinear fitting of systems of ODE equations. For this memristive model case (MM1+tau), the

26 optimized parameters are lambdax, lambday, eta1, eta2, eta3, eta4, tau, alpha1, beta1,

27 gamma, delta, alpha2, beta2, and x0.

28

29

30 Citation:

31 If you use this code in academic publications, please, cite our work appropriately.

32

33 Parameters:

34 -----------

35 lambdap, lambdan, eta1, eta2, eta3, eta4: float

36 Nonlinear ion-drift parameters in the dynamical state equation

37

38 tau: float

39 Diffusion rate

40

41 vmax, freq: float

42 Voltage amplitude (in Volts) and frequency of the input voltage signal

43

44 alpha1, beta1: float

45 Current response function parameters (Schottky contribution)

46

47 gamma, delta: float

48 Current response function parameters (tunnelling contribution)

49

50 alpha2, beta2: float

51 Current response function parameters (rectifier contribution)

52

53 points: int

54 Number of points in the timeline (arb. units)

1 of 4

Electronic Supplementary Material (ESI) for Nanoscale Advances.
This journal is © The Royal Society of Chemistry 2020

S. Alialy, et al.

55

56 Returns: three plots: (i) x versus t, (ii) I versus V, and (iii) V versus t

57 ’’’

58

59 # importing canonical python libraries

60 import matplotlib.pyplot as plt

61 import numpy as np

62 from scipy.integrate import odeint

63

64 # State equation dx/dt to be integrated

65 def myFunc(x, t, *args):

66 ’’’After integrated, returns x(t).

67

68 Keyword arguments:

69 t -- time

70 x -- internal state variable

71 *args -- multiple memristive parameters: lambdap, lambdan, eta1, eta2, eta3, eta4, tau

72 *args -- input voltage signal parameters: vmax, freq

73 ’’’

74

75 v = vmax * np.sin(2.0 * freq * np.pi * t)

76 xdyn = x

77

78 if t <= freq/2:

79 dxdt = (lambdap * (np.exp(eta1*v) - np.exp(eta2)) - xdyn/tau) * (1.0 - (2.0*xdyn - 1.0)**2)

80 else:

81 dxdt = (lambdan * (np.exp(-eta3*v) - np.exp(eta4)) - xdyn/tau) * (1.0 - (2.0*xdyn - 1.0)**2)

82

83 return dxdt

84

85

86 # general parameters for the voltage (sinusoidal) input

87 vmax = 10.0

88 freq = 1.0

89

90 # parameters taken from the fitting procedure

91 alpha1 = 6.82991497

92 beta1 = 0.10051066

93 alpha2 = 3.42451238

94 beta2 = 0.01325593

95 gamma = 1.6138e-04

96 delta = 0.99905798

97

98 lambdap = 3.05688105

99 lambdan = 3.56661637

100 eta1 = 0.19781416

101 eta2 = 0.35545468

102 eta3 = 0.19863980

103 eta4 = 0.53302178

104 tau = 0.10820846

105 dxdt_params = (vmax, freq, lambdap, lambdan, eta1, eta2, eta3, eta4, tau)

106

107 # number of points in the timeline

108 points = 10000

109

110 # create a timeline vector

111 t = np.array([0.0, 1.0])

112 tspan_vector = np.linspace(t[0], t[1], points)

113

2 of 4

S. Alialy, et al.

114 # voltage input signal

115 V = vmax * np.sin(freq * 2.0 * np.pi * tspan_vector)

116

117 # steps in the timeline

118 h = tspan_vector[1] - tspan_vector[0]

119

120 # initial conditions for the internal state variable

121 x0 = 0.9

122

123 # integration of the dynamical state equation

124 xs = odeint(myFunc, x0, tspan_vector, args=dxdt_params)

125

126 # calculating current values from the solution x(t)

127 ic = (1.0 - xs[:,0]) * alpha1 * (1.0 - np.exp(-beta1 * V[:])) + xs[:,0] * gamma * np.sinh(delta * V[:]) +

alpha2 * (1.0 - np.exp(-beta2 * V[:]))

128

129 # plotting instructions

130

131 # plotting x versus t

132 plt.figure()

133 plt.plot(tspan_vector, xs[:,0], ’r’)

134 plt.xlim(t[0], t[1])

135 plt.xlabel(’t’, fontsize=17)

136 plt.ylabel(’x’, fontsize=17)

137 plt.tight_layout()

138

139 # plotting I versus V

140 plt.figure()

141 plt.plot(V, ic, ’r’)

142 plt.xlabel(’V’, fontsize=17)

143 plt.ylabel(’I’, fontsize=17)

144

145 # plotting V versus t

146 plt.figure()

147 plt.plot(tspan_vector, V, ’r’)

148 plt.xlabel(’t’, fontsize=17)

149 plt.ylabel(’V’, fontsize=17)

150

151 plt.show()

3 of 4

S. Alialy, et al.

The figures below are screenshots of the output of this sample code for the sake of reference. The code
plots x(t)× t, I × V , and V (t)× t. The used parameters were optimized to fit our particular experimental
data of Au-Ti/TiO2/Ti-Au devices in vacuum and at room temperature. These parameters work better
for a single voltage cycle.

4 of 4

