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S1 Molecular Dynamics Simulations

S1.1 The Hybrid Particle-Field Approach

In the framework of self-consistent field theory (SCF), the model systems are not repre-

sented by particles but by density fields and the inter-molecular interactions are evaluated

as interactions with static external fields instead of particle-particle interactions. These

field-based approaches allow for the simulation of materials on scales much larger than the

ones particle-based. Recently, hybrid particle-field approach (hPF) method combining a mi-

croscopic molecular representation to density-based potential, has been introduced.1–3 This

technique has been proposed within a molecular dynamics framework (hPF-MD) and suc-

cessfully validated and widely employed in many applications, giving excellent results and

drastic reduction of the computational cost.4,5 This approach, implemented in the OCCAM

software6 and employed in this work to simulate the aggregation of the CNTs in the polymer

matrix, will be briefly described in this section. The main feature of hPF-MD approach is

that non-bonded forces and potentials are replaced by the calculation of external potentials

depending on the local density at position r.4 According to the SCF theory a multi-body

problem such as the molecular motion can be reduced to the problem of deriving the parti-

tion function of a molecule in an external potential V (r), and to obtain a convenient V (r)

expression and its derivatives. The form of the density dependent interaction potential W,

where each species is specified by the index K, takes the following form:

W [{φK(r)}] =

∫
dr

(
kBT

2

∑
KK′

χKK′φK(r)φK′ (r) +
1

2κ

(∑
K

φK(r)− φ0

)2)
(S1)

where φK(r) is the coarse-grained density of species K at position r and χKK′ are the

mean field parameters for the interaction of a particle of type K with the density field due to

the particles of type K
′
. The second term represents the incompressibility condition and κ
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is the compressibility acting against local density inhomogeneity, assumed to be sufficiently

small, while φ0 is the total number density of the system.6 By using the so-called saddle

point approximation, it can be shown that the external potential is given by:

VK(r) =
δW [φK(r)]

δφK(r)
=

kBT
∑
K′

χKK′φK′ (r) +
1

κ

(∑
K

φK(r)− φ0

) (S2)

To connect the particle and field models for the proposed scheme, it is necessary to

obtain a smooth coarse-grained density function directly from the particle positions. This

function can be obtained by a mesh-based approach, that must be able to also give the

density derivatives required to calculate the forces acting on the molecules. Further details

on the derviation of the equation above and on the OCCAM code are given elsewhere.4–6

S1.2 Mesh-based Approach for Density Function

A smooth coarse-grained density function (φ(r)) required for the MD-SCF scheme and de-

rived directly from particle positions Γ is obtained from a mesh-based approach. Let us

denote this procedure as:4

S̄
{
φ̂ (r; Γ)

}
= φ(r) (S3)

Where S is a symbolic name of the mapping from the particle positions to the coarse-

grained density. The potential energy at a given time during the simulation is the sum

of both intramolecular interaction potentials (bond, angle and intramolecular non bonded)

and density dependent mean field potential, where this one is obtained from the initial

configuration of the system at the beginning of the simulation. During the simulation, the

density is updated according to the updated particle positions in the simulation box, and

from it a new value of the potential energy is calculated and then new forces.
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In order to obtain the coarse-grained density, according to their position in the simulation

box, the explicit particles are distributed in grid elements in which the simulation box is

divided in the three dimensions. The density and its derivatives used for the calculation

of the forces and potential energy due to particle-field interactions are defined on three-

dimensional lattice points obeying the periodic boundary conditions. The values of the

density function at position r between lattice points are evaluated using linear interpolation

of the values at neighbor latticed points.

In the implemented scheme the particle fractions are not assigned to the cell elements

(lower order choice) but to the cell verteces, according to a scheme shown in Figure S1 where

a two-dimentional case is presented.

Figure S1. Geometry of particles fraction assignment in a two-dimentional case.
This picture is taken from Ref. 4.

In particular, the fraction of a particle assigned to a given vertex is proportional to the

area of a rectangle whose diagonal is the line connecting the particle position and the mesh

point on the opposite site of the cell. For istance, a fraction x ∗ y/l2 is assigned to the
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mesh point 1. l is the length of a side of the cell. The three-dimentional case is just a

simple extension where the particle fraction is a volume instead of an area. This approach

allows to keep a more precise information on the initial particle position and at the same

time the sensitivity to the particles configuration inside the cell element is higher since a

fraction of the particle is assigned to the cell verteces according to the distance from them.4

Instead, a particle assignment to the cell element (lower order choice), could not disentangle

among different orientations of the particles inside the cell and a less accurate description

and density function would be obtained. This picture advantages directly reflect in the Joule

heating calculation accuracy since a more detailed map of the molecules positions is kept.

Indeed, the local density on the verteces are employed for the calculation of local electrical

conductivities, necessary for the evaluation of the Joule heat generation.

S1.3 Computational Details

All the random conformations of CNT filled polymers are generated by using the Packmol

software. The assembled systems both in monomer and linear polymer, starting from random

configurations, are obtained by running hybrid particle-field dynamics with the OCCAM

software package. In this way, the computational cost is importantly reduced. All the

studied systems are treated at coarse grain level of theory and all the details of the coarse

grain model and the details of the performed simulations are the same already successfully

used in a previous work.7 For all the simulated composite materials, the CNTs length is

about 28 nm and the diameter is 1.4 nm, so the aspect ratio is about 20 in all cases, the

cubic simulation box length is 113.12 nm, the grid length for the density field calculation is

of about 2.1 nm, and a density update frequency was set to 300 time steps.

To obtain the assembled morphologies, for all the systems the NVT ensamble was em-

ployed keeping the temperature constant at 300 K using the Andersen thermostat with a

collision frequency of 20 ps−1. All the simulations were about 2 µs long and a timestep of

0.03 ps was chosen.
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To describe bonds between consecutive beads an harmonic potential was used:

Vbond(R) =
1

2
Kbond (R−Rbond)

2 (S4)

where an equilibrium distance set to 1.12 nm for CNTs and 1.4 nm for the polymer and

a force constant Kbond of 10000 KJ/mol is used in both cases. The CNTs stiffness is taken

into account by an harmonic potential depending on the cosine of angle among the beads

where θ is the angle between two successive bonds:

Vangle(θ) =
1

2
Kangle

{
cos(θ)− cos(θ0)

}2
(S5)

where the equilibrium bond angle was set to θ0 = 180◦ while the force constant Kangle

was set to 8000 KJ/mol. Regarding non-bonded repulsive interactions between CNTs and

polymer beads, the interaction parameter was set to: χKK′ x RT =12 KJ/mol. All the

systems and simulations details are resumed in Table S1, Table S2 and Table S3.

Table S1. Simulation details of nanocomposites molecules lengths and simula-
tion box length.

No. beads of one CNT No. beads of one polymer chain No. beads of one monomer Box length (nm)

25 25 1 113.12

Table S2. Composition details of all the simulated composite systems in polymer
matrix.

Vol % No. of CNTs No. of polymer chains Total no. of molecules Total no. of beads Simulated time (µs)

1 176 17424 17600 440000 2.8
2 352 17248 17600 440000 2.5
3 528 17072 17600 440000 2.5
4 704 16896 17600 440000 2.5
5 880 16720 17600 440000 0.5
6 1056 16544 17600 440000 1.3
7 1232 16368 17600 440000 1.3
8 1408 16192 17600 440000 0.5
9 1584 16016 17600 440000 0.5
10 1760 15840 17600 440000 1.7
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Table S3. Composition details of all the simulated composite systems in
monomer matrix.

Vol % No. of CNTs No. of monomers Total no. of molecules Total no. of beads Simulated time (µs)

1 176 435600 435776 440000 11.4
2 352 431200 431552 440000 2.7
3 528 426800 427328 440000 1.8
4 704 422400 423104 440000 2.7
5 880 418000 418880 440000 2.8
6 1056 413600 414656 440000 1
7 1232 409200 410432 440000 1
8 1408 404800 406208 440000 1.4
9 1584 400400 401984 440000 2.3
10 1760 396000 397760 440000 1

S2 Temperatures Time Evolution

In this Section we show for some of the analysed case studies the linear trend of temperature

rise against the time found in all the simulations. In particular, for the random morphology

and assembled morphology in monomer and polymer we show in Figure S2 and Figure S3 the

temporal evolution of the temperature, obtained by averaging over all the local temperatures,

when an external voltage of 30 or 40 V is applied, respectively. These are the simulations

that have been compared with experimental data from.8 As observed from the heating rates,

the temperatures rise more in the assembled morphologies with respect to the random one.

Moreover, in all cases higher temperatures are reached when larger voltage are applied.
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Figure S2. Temperature time evolution for random and assembled morphologies
after the application of an external voltage of 30 V.

Figure S3. Temperature time evolution for random and assembled morphologies
after the application of an external voltage of 40 V.

S3 Energy Conservation in Heat Diffusion Equation

The energy conservation requirement for the heat transfer process states that the rate at

which thermal energy enters the control volume plus the rate of energy generation (if any) is

equal to the rate at which thermal energy leaves the control volume plus the rate of energy

storage inside the control volume. For an unsteady state case of heat diffusion, i.e. the
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temperature changes with time, the rate of energy storage inside the control volume is:

ρclα
Ti(t+ 1)− Ti(t)

∆t
(S6)

where ρ is the mass density in g/nm3, c is the specific heat in J/gK, Ti is the temperature

in K in the grid vertex i at time t or t + 1, ∆t is the time step, lα is the grid length in the

α direction. This term is calculated for the three directions, and is added to the energy

balance expression where the rate of heat entering a cell element (in our case a vertex) has

to be equal to the rate of heat exiting from it when there is not a heat source, plus such

term, measured in W/nm3:

−kTi(t)− Ti−1(t)

lα
= −kTi+1(t)− Ti(t)

lα
+ ρclα

Ti(t+ 1)− Ti(t)
∆t

(S7)

where k is the thermal conductivity (W/nmK). All but one temperatures are evaluated

at time t beside only one calculated at time i+ 1.

In Figure S4, the sum of all these contributions to the energy balance is presented. Such

sum has to be zero on each vertex of the grid and the sum on all the verteces is shown. This

requirement is successfully tested on each case study presented in the paper, confirming the

correct implementation of the code for the heat diffusion equation, in agreement with the

physical requirement of the energy conservation.
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Figure S4. Sum of all the contributions to the heat transfer process. Rates
of thermal energy enterning and leaving a grid element are all considered and
summed for all the verteces of the grid.
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