Supporting Information

La³⁺ doped TiO₂ nanoparticles decorated functionalized-MWCNTs catalyst: a novel electrochemical non-enzymatic sensing of paraoxon-ethyl

Raja Nehru^a and Shen-Ming Chen^{a*}

^aDepartment of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.

*E-mail: *smchen1957@gmail.com,nrajache@gmail.com*

Result and discussion:

UV-DRS:

Fig.S1. UV-Vis diffuse reflectance spectra for the undoped and La³⁺-doped TiO₂ NPs.

The UV-Vis diffuse reflectance spectra of undoped and La^{3+} doped TiO₂ NPs and their bandgap energy (Eg) level, as given in Fig.S1(a-c), which were associated with an indirect transition. It can observe that the La^{3+} doping concentration shows the red-shift compared with undoped TiO₂ NPs, indicating that decreasing in the band gap (2.98 eV), while the Eg of pure TiO₂ was 3.09 eV. The red-shift could attribute to the charge-transfer transition between 4f or 5d electrons of La^{3+} doping on Ti⁴⁺ of TiO₂ NPs. Herein, the doping of La^{3+} reduced the bandgap while compared with pure TiO₂, and eventually increases the catalytic ability to the La^{3+} doped TiO₂ NPs.

Fig.S2. (a) X-ray powder diffraction pattern and (b) FT-IR spectra of *f*-MWCNTs.

Fig.S3. (a-b) HR-TEM and SAED pattern image of pure-TiO₂ NPs. (c) The TiO₂ NP line profile for the selected line and its inverse FFT image, indicating that its d spacing was 3.81 Å.

Fig. S4. The reproducibility of different modified electrodes using La^{3+} doped TiO₂ NPs decorated *f*-MWCNTs.