ELECTRONIC SUPPLEMENTARY INFORMATION

TETT-functionalized TiO₂ nanoparticles for DOX loading: a quantum mechanical study at the atomic scale.

Martina Datteo¹, Lorenzo Ferraro¹, Gotthard Seifert² and Cristiana Di Valentin^{1,*}

¹ Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca,

via R. Cozzi 55, 20125 Milano Italy.

² Technische Universität Dresden, Institut für Theoretische Chemie, D-01062 Dresden, Germany

^{*} Corresponding author: cristiana.divalentin@unimib.it

Figure S1 Monodentate (a), bidentate (b), and tridentate (c) adsorption modes (side views) and adsorption energy per one TETT molecule (in eV) on the tri-site C of the spherical NP (Figure 2) as obtained by the DFT(B3LYP-D*) and DFTB. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atoms in yellow, C atoms in green, and N atoms in blue. Relevant covalent bonds are reported in Å in proximity of the bond.

Table S1 Comparison between the mono-, bi- and tri-dentate adsorption mode (ΔE , in eV) for the TETT molecule on the TiO₂ nanoparticle with the DFT(B3LYP-D*) and the DFTB method for the tri-site C (Figure 2). The scaled DFTB values are also reported. The energy gain per bond is reported in parenthesis for each adsorption mode taken in account.

	$\Delta E (eV)$		
	DFT(B3LYP-D*)	DFTB	scaled DFTB
	per ligand (per bond)	per ligand (per bond)	per ligand (per bond)
mono-	-1.84 (-1.84)	-2.09 (-2.09)	-1.84 (-1.84)
bi-	-2.16 (-1.08)	-2.96 (-1.48)	-2.16 (-1.08)
tri-	-2.58 (-0.86)	-3.75 (-1.25)	-2.58 (-0.86)

Figure S2 Optimized last snapshot of the free TETT molecule from two different production runs. Si atoms in yellow, O atoms in red, H atoms in white, C atoms in green, and N atoms in blue. Relative energies values (in eV), with respect to the most stable **a** configuration, are reported below each structure. Intramolecular hydrogen bonds (in Å) are indicated with a dashed lines.

Figure S3 Ball-and-stick representations of three undissociated and three dissociate water molecules on the identified tri-sites in Figure 2. Ti atoms are shown in cyan, H atoms in white, O atoms in red, and water O atoms in blue. Relevant bond lengths (in Å) and DFT (B3LYP-D*) adsorption energies (in eV) are also given below each structure.

Figure S4 On the right, top view of the tri-site C on the bare spherical NP, and on the left one TETT molecule adsorbed on the tri-site C (Figure 2), as obtained by DFTB-D3 and DFT (B3LYP-D*) calculations. The displacement of the O_{2c} oxygen in the NP is show by dash lines due the TETT adsorption. Ti atoms are shown in cyan, O atoms in red, H atoms are shown in white, Si atom in yellow, C atoms in green, and N atoms in blue. Relevant distances, for both methods, are reported in Å. The DFT(B3LYP-D*) distances are detailed in parenthesis.

Figure S5 Adsorption mode (side views) and adsorption energy per one TETT molecule (in eV) on tri site D (see Table 1) of the spherical NP as obtained by the DFTB-D3. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atoms in yellow, C atoms in green, and N atoms in blue. The displacement of the O_{2c} oxygen in the NP is show by dash lines due the TETT adsorption. Relevant covalent bonds are reported in Å in proximity of the bond.

Figure S6 On the right, side view of the tri-site B on the bare spherical NP and on the left one TETT molecule adsorbed on the tri-site B (see Table 1), as obtained by DFTB-D3. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atom in yellow, C atoms in green, and N atoms in blue. The Ti-Ti distances are show by dash lines in Å. The adsorption energy per one TETT molecule is in eV.

Figure S7 On the right, side view of the tri-site A on the bare spherical NP and on the left one TETT molecule adsorbed on the tri-site A (see Table 1), as obtained by DFTB-D3. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atom in yellow, C atoms in green, and N atoms in blue. The Ti-Ti distances are show by dash lines in Å. Other relevant bonds are reported in proximity of the bond. The adsorption energy per one TETT molecule is in eV.

Figure S8 Adsorption modes (side views) and adsorption energy per one TETT molecule (in eV) on the tri-H-bidentate E and tri-H-bidentate F sites (Table 1) of the spherical NP as obtained by the DFTB-D3. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atoms in yellow, C atoms in green, and N atoms in blue. H-bonds (in Å) are indicated with a dashed lines.

Figure S9 On the left, the angle θ between the plane (in light blu), which contains the Ti atoms of the tri-site, and the vector (black arrow) that join the Si atom and the farthest N atom in the TETT molecule. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atom in yellow, C atoms in green, and N atoms in blue. On the right, the evolution of the angle θ for the tri-site D (Figure 2).

Figure S10 Adsorption configurations (side views) and energies (in eV) for one TETT molecule on the tri-site A of the spherical NP (Figure 2) as obtained by DFTB-D3 calculations. The most stable configuration named After md 4 correspond to Figure 4b. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atoms in yellow, C atoms in green, and N atoms in blue. Relevant hydrogen bonds and coordinative bonds are represented by dashed lines and solid lines, respectively. Distances are reported in Å.

Figure S11 Adsorption configurations (side views) and energies (in eV) for one TETT molecule on the tri-site B of the spherical NP (Figure 2) as obtained by DFTB-D3 calculations. The most stable configuration named After md 1 correspond to Figure 6b. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atoms in yellow, C atoms in green, and N atoms in blue. Relevant hydrogen bonds and coordinative bonds are represented by dashed lines and solid lines, respectively. Distances are reported in Å.

Figure S12 Adsorption configurations (side views) and energies (in eV) for one TETT molecule on the tri-site C of the spherical NP (Figure 2) as obtained by DFTB-D3 calculations. The most stable configuration named After md 6 correspond to Figure 7b. Ti atoms are shown in cyan, O atoms in red, H atoms in white, Si atoms in yellow, C atoms in green, and N atoms in blue. Relevant hydrogen bonds and coordinative bonds are represented by dashed lines and solid lines, respectively. Distances are reported in Å.