Disulfide Exchange Assisted Self-healing Epoxy/PDMS/Graphene Oxide

Nanocomposites

Balaji Krishnakumar,¹ Manjeet Singh,¹ Vijay Parthasarthy,¹ Chanwook Park,² Nanda Gopal Sahoo,³ Gun Jin Yun,*² Sravendra Rana*¹

¹University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India,

²Institute of Advanced Aerospace Technology, Seoul National University, Gwanak-gu Gwanak-ro 1, Seoul 08826, South Korea

³Nanoscience and Nanotechnology Centre, Department of Chemistry, D.B.S. Campus, Kumaun University, Nainital, Uttarakhand, 263001, India

*Correspondence: Email: srana@ddn.upes.ac.in (S. Rana), gunjin.yun@snu.ac.kr (G.J. Yun)

Preparation of graphene oxide:

Hummers method was followed to synthesis graphene oxide(GO) sheets. The sulfuric acid (23ml) was added in the mixture of graphite flakes (1g) and sodium nitrate (NaN0₃) (0.5g) at 0°C (ice bath). After 10 -15 mins, the Potassium permanganate (KMnO₄) (3mg) was slowly added in the reaction mixture at 20°c, then it was allowed at 35°C for 7h. Furthermore, Potassium permanganate (KmnO₄) (3g) was added slowly in the reaction and it was stirred at 35°C for 10-12h. Then after, reaction mixture was cooled at room temperature and then cold water (133ml) was added with 30% hydrogen peroxide(H₂O₂) (3ml). Finally, after certain time precipitated layer was washed with ethanol, HCl and water 3 times respectively by centrifuge.

Calculation for epoxy and amine hardener ratio:

Parts by weight of amine to be used with 100 parts by weight of BADGE resin (phr) =

(amine hardener molecular weight / number of hydrogens per molecule)

BADGE equivalent weight * 100%

The equivalent weight of BADGE resin is 176 g/mole (mentioned by manufacture) and an active hydrogen in 2-AFD is FOUR.

$$=> \left(\frac{248/4}{176}\right) * 100_{\%} = 35.6\%$$

So, 35.6 g of AFD is needed to cure the 100 g of BADGE resin.

Table S1. Different (a) Epoxy composite and (b) Epoxy/PDMS/GO nanocomposite

(a) Epoxy/PDMS composites

	Epoxy (m g)	DG-PDMS		
Sample Code		PDMS Weight (mg)	Weight percentage (wt%)	
EP-pristine	500	0	0	
EP-1	500	5	1	
EP-2	500	10	2	
EP-3	500	15	3	
EP-5	500	25	5	

(b) Epoxy/PDMS/GO Nanocomposites

Epoxy-2- GO (EP- 2-y)	Epoxy (mg)	DG-PDMS (mg)		Graphene oxide (mg)		Graphene oxide
		Weight (mg)	Weight percentage (wt%)	Weight (mg)	Weight percentage (wt%)	dispersed solution (mL)
EP-2-0.1	600	12	2	0.6	0.1	0.04
EP-2-0.2	600	12	2	1.2	0.2	0.08
EP-2-0.5	600	12	2	3	0.5	0.20
EP-2- 1	600	12	2	6	1	0.40
EP-2- 2	600	12	2	12	2	0.80

XRD

Figure S1. X-Ray Diffraction spectroscopy analysis for graphene oxide

FTIR

Figure S2. FTIR results for EP-pristine curing with respect to time

THF swelling test:

Figure S3. THF swelling test for (i) EP-p (ii) EP-2-0.5

Contact angle measurements

Figure S4. Contact angle measurements of different samples.

Glass transition temperature:

The different nano fillers contained epoxy vitrimer glass transition was analyzed through TA-Q400 em dimension change experiments.

a) EP-pristine

b) EP-1

c) EP-2

d) EP-3

e) EP-5

f) EP-2-0.1

g) EP-2-0.2

h) EP-2-0.5

i) EP-2-1

j) EP-2-2

Figure S5. Glass transition temperature through TA-Q400em dimensional change experiments

Calculations for stress relaxation derived activation energy

i) EP-p:

Equation obtained from Arrhenius law: y = y = 7094.2x - 16.708

Which corresponds to: $ln(\tau^*) = 7094.2 * 1/T - 16.708$

The Arrhenius law related to the activation energy is:

$$\tau^* = \tau_0 \exp\left(E_a/RT\right) \tag{S1}$$

Identifying this to the experimental equation: $E_a/R = 7094.2$

$$E_a = 7094.2 * 8.314 = 59 \text{ kJ/mol}$$
 Therefore: $ln(\tau^*) = ln(\tau_0) + E_a/RT$

Calculation for T_v:

To calculate T_v , we used Maxwell equation (S2),

$$\eta = G. \tau^* \tag{S2}$$

G- Shear viscosity modulus;

Relation between shear modulus and tensile modulus,

$$G = E'/2(1+v)$$
 (S3)

Generally, v- Poisson's ratio is 0.5 for rubbery materials. From the storage modulus (Figure 5a), average tensile modulus was observed at 80°c- 120°c temperature range and the obtained value 1504 MPa denoted the rubbery plateau modulus of vitrimer network.

So,
$$G=1504/3=501$$
MPa (or) $501*10^6$ Pa

To find T_v , viscosity value arbitrary has been taken as: $\eta=10^{12}$ Pa.s.

$$\tau^* = 10^{12}/(501*10^6) = 1996 \text{ s.}$$

$$ln(\tau^*) = ln(1996) = 7.59$$

Equation obtained from Arrhenius law: $ln(\tau^*) = 7094.2x - 16.708$

$$x=1/T=(\ln(\tau^*)+16.708)/7094.2=0.003426$$

So, T = 1/0.003426

 $T_v=292 \text{ K (or) } 19^{0}\text{C}$.

ii) **EP-2**:

Equation obtained from Arrhenius law: y = y = 6227.7X-15.482

Which corresponds to: $ln(\tau^*) = 6227.7 * 1/T - 15.482$

The Arrhenius law related to the activation energy is:

$$\tau^* = \tau_0 \exp\left(E_a/RT\right) \tag{S1}$$

Therefore: $ln(\tau^*) = ln(\tau_0) + E_a/RT$

Identifying this to the experimental equation: $E_a/R = 6227.7$

$$E_a = 6227.7 * 8.314 = 51.7 \text{ kJ/mol}$$

Calculation for T_v:

To calculate T_v , we used Maxwell equation (S2),

$$\eta = G. \tau^* \tag{S2}$$

G- Shear viscosity modulus;

Relation between shear modulus and tensile modulus,

$$G = E'/2(1+v)$$
 (S3)

Generally, v- Poisson's ratio is 0.5 for rubbery materials. From the storage modulus (Figure 5a), average tensile modulus was observed at 70°c- 120°c temperature range and the obtained value 1795 MPa denoted the rubbery plateau modulus of vitrimer network.

To find T_v , viscosity value arbitrary has been taken as: $\eta=10^{12}$ Pa.s.

$$\tau^* = 10^{12}/(598.3*10^6) = 1671.42 \text{ s.}$$

$$ln(\tau^*) = ln(1671.42) = 7.42$$

Equation obtained from Arrhenius law: $ln(\tau^*) = 6227.7X-15.482$

$$x=1/T=(\ln(\tau^*)+15.482)/6227.7=0.003677$$

So, T = 1/0.003677

 $T_v = 272 \text{ K (or)} - 1^{\circ}\text{C}$.

iii) **EP-2-0.5**:

Equation obtained from Arrhenius law: y = y = 21639x-63.982

Which corresponds to: $ln(\tau^*) = 21639 * 1/T - 63.982$

The Arrhenius law related to the activation energy is:

$$\tau^* = \tau_0 \exp\left(E_a/RT\right) \tag{S1}$$

Therefore: $ln(\tau^*) = ln(\tau_0) + E_a/RT$

Identifying this to the experimental equation: $E_a/R = 21639$

$$E_a = 21639 * 8.314 = 179.9 \text{ kJ/mol}$$

Calculation for T_v:

To calculate T_v, we used Maxwell equation (S2),

$$\eta = G. \tau^* \tag{S2}$$

G- Shear viscosity modulus;

Relation between shear modulus and tensile modulus,

$$G = E'/2(1+v)$$
 (S3)

Generally, v- Poisson's ratio is 0.5 for rubbery materials. From the storage modulus (Figure 5a), average tensile modulus was observed at 60°c- 120°c temperature range and the obtained value 2452 MPa denoted the rubbery plateau modulus of vitrimer network.

So ,
$$G=2452/3=817.3 \text{ MPa (or) } 817.3*10^6 \text{ Pa}$$

To find T_v , viscosity value arbitrary has been taken as: $\eta = 10^{12}$ Pa.s.

$$\tau^* = 10^{12} / (817.3 \times 10^6) = 1223.5 \text{ s.}$$

$$ln(\tau^*) = ln(1223.5) = 7.1$$

Equation obtained from Arrhenius law: $ln(\tau^*) = 21639x-63.982$

$$x=1/T=(ln(\tau^*)+63.982)/21639=0.00328$$

So,
$$T = 1/0.00328$$

 $T_v=304 \text{ K (or) } 31^{\circ}\text{C}$.

Supporting videos:

1. EP-p self-healing