Supplementary Information for

Prospective Application of Graphene/ MoS₂ Heterostructure in Si-HIT solar cell for Higher Efficiency

Chandra Kamal Borah¹, Pawan K. Tyagi² and Sanjeev Kumar^{1*}

¹Centre of Advanced Research, Department of Physics, Rajiv Gandhi University, Arunachal Pradesh-791112, India

² Department of Physics, Central University of Haryana, Haryana-123029, India

S.1: Calculation of maximum power and series resistance:

The series (R_s) of 2.5 Ω .cm² was achieved, using a simple method as prescribed in the previous literature. This value is compatible with the value (8.8 Ω .cm²-30 Ω cm²) of the experimentally demonstrated graphene/MoS₂/silicon-based solar cell ². Likewise, a maximum power (P_{max}) of 25.4 mW/cm² was achieved using the formula as described in ref.3.

Fig. S1: Calculation of maximum power (P_{max}) and series resistance (R_s) of the best optimized cell

*Corresponding author:

E-mail addresses: sanjeev.kumar@rgu.ac.in

References:

1. M. Diantoro, T. Suprayogi, A. Hidayat, A. Taufiq, A. Fuad, and R. Suryana, *International Journal of Photoenergy*, 2018, <u>https://doi.org/10.1155/2018/9214820</u>

2. Y. Tsuboi, F. Wang, D. Kozawa, K. Funahashi, S. Mouri, Y. Miyauchi, T. Takenobub and K. Matsuda, *Nanoscale*, 2015,7, 14476-14482

 J. Cubas , S. Pindado and C. de Manuel, Conference Proceedings Paper – Energies 2014 DOI: 10.3390/ece-1-c013