Electronic Supplementary Material (ESI) for Nanoscale Advances
This journal is © The Royal Society of Chemistry 2020

Supporting Information

Facile	hydrothermal	synthesis	of	porous	MgCo ₂ O ₄	nanoflakes	as	electrode	
material for high-performance asymmetric supercapacitors									

Huiyu Chen, Xuming Du, Runze Wu, Ya Wang, Jiale Sun, Yanfei Zhang, Chunju Xu*

School of Materials Science and Engineering, North University of China, Taiyuan 030051, China

E-mail: chunju@nuc.edu.cn (C. Xu)

^{*} Author to whom correspondence should be addressed.

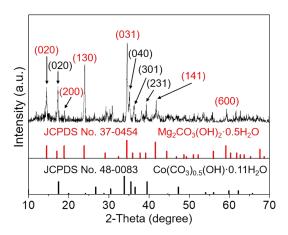


Fig. S1. The XRD pattern of the precipitate after hydrothermal reaction

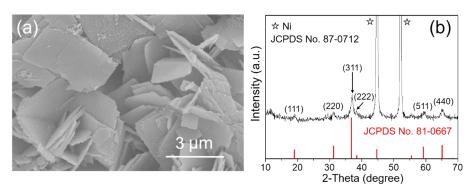


Fig. S2. (a) The SEM image and (b) XRD pattern of the $MgCo_2O_4$ NFs after 5000 continuous GCD test

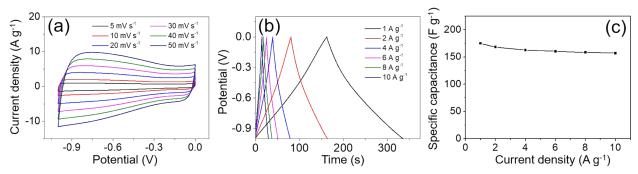


Fig. S3. Electrochemical tests of the AC electrode in 2 M of KOH solution: (a) CV curves obtained at scan rate from 5 to 50 mV s⁻¹, (b) GCD curves measured at different current density from 1 to 10 A g⁻¹, and (c) specific capacitance at different current density.