Poly-D-lysine coated nanoparticles to identify pro-

inflammatory macrophages

Derek S. Hernandez¹, Hattie C. Schunk^{1,2}, Karan M. Shankar¹, Adrianne M. Rosales², Laura J.

Suggs¹*†

²McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX

78712, United States

¹Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712,

United States

Corresponding Author: Laura J. Suggs, suggs@utexas.edu

SUPPLEMENTARY FIGURES

Supplementary Figure S1. Relative contribution of FRET vs. NSET for PDL-FITC AuNP system. Dissolving the AuNP using KCN results in a 1.8X increase in fluorescence intensity (FI) over the control, representative of the NSET contribution. This compares to a total 7X FI increase following H_2O_2 addition (10 mM). Thus, NSET contributes a small fraction of the total fluorescence gained in peroxide solutions. (Control = PDL-FITC AuNP in PBS buffer alone, all fluorescence was normalized to this base FI).

Supplementary Figure S2. Single image snapshots of BMDMs using bright-field and fluorescence microscopy show observed differences in M0 (A) vs. M1 (B) groups as early as 3 h post stimulation using100 ng/mL LPS + 100 ng/mL IFN-γ.