Supporting Information

Establishing Empirical Design Rules of Nucleic Acid Templates for Synthesis of Silver Nanoclusters with Tunable Photoluminescence and Functionalities Towards Targeted Bioimaging Applications

Jason Y.C. Lim,^{†,a} Yong Yu,^{†,a} Guorui Jin,^a Kai Li,^a Yi Lu,^b Jianping Xie,^c Yen Nee Tan^{*,a,d}

^a Institute of Materials Research and Engineering, the Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis 138634, Singapore E-mail: tanyn@imre.a-star.edu.sg

^b Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United State

^c Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent 119260, Singapore

^d Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom E-mail: yennee.tan@newcastle.ac.uk

[†]Equal contribution

*Corresponding Author

A/Prof. Yen Nee Tan (Email: <u>yennee.tan@newcastle.ac.uk</u>)

	Abbreviated	Full Sequence
	Sequence	
Homo-	dC ₂₀	5'-CCCCC CCCCC CCCCC-3'
oligonucleotides	dG ₂₀	5'-GGGGG GGGGG GGGGG GGGGG-3'
	dA_{20}	5'-AAAAA AAAAA AAAAA AAAAA-3'
	dT ₂₀	5'-TTTTT TTTTT TTTTTT TTTTT-3'
2-base sequences	dC ₁₅ G ₅	5'-CCCCC CCCCC CCCCC GGGGG-3'
	$dC_{10}G_{10}$	5'-CCCCC CCCCC GGGGG GGGGG-3'
	dC_5G_{15}	5'-CCCCCC GGGGG GGGGG GGGGG-3'
	$dC_{15}A_5$	5'- CCCCC CCCCC CCCCC AAAAA-3'
	$dC_{10}A_{10}$	5'-CCCCC CCCCC AAAAA AAAAA-3'
	dC_5A_{15}	5'-CCCCC AAAAA AAAAA AAAAA-3'
	$dC_{15}T_5$	5'- CCCCC CCCCC CCCCC TTTTT-3'
	$dC_{10}T_{10}$	5'-CCCCC CCCCC TTTTT TTTTT-3'
	dC_5T_{15}	5'- CCCCC TTTTT TTTTT TTTTT-3'
	$dG_{15}A_5$	5'-GGGGG GGGGG GGGGG AAAAA-3'
	$dG_{10}A_{10}$	5'-GGGGG GGGGG AAAAA AAAAA-3'
	dG_5A_{15}	5'-GGGGG AAAAA AAAAA AAAAA-3'
	$dG_{15}T_5$	5'-GGGGG GGGGG GGGGG TTTTT-3'
	$dG_{10}T_{10}$	5'-GGGGG GGGGG TTTTT TTTTT-3'
	dG_5T_{15}	5'-GGGGG TTTTT TTTTT TTTTT-3'
	$dA_{15}T_5$	5'-ΑΑΑΑΑ ΑΑΑΑΑ ΑΑΑΑΑ ΑΑΑΑΑ.3'
	$dA_{10}T_{10}$	5'-AAAAA AAAAA TTTTT TTTTT-3'
	dA_5T_{15}	5'-AAAAA TTTTT TTTTT TTTTT-3'
Interdigitated	d(CA) ₁₀	5'-CACAC ACACA CACAC ACACA-3'
sequences	d(CT) ₁₀	5'-CTCTC TCTCT CTCTC TCTCT-3'
	$d(GA)_{10}$	5'-GAGAG AGAGA GAGAG AGAGA-3'
	d(CG) ₁₀	5'-CGCGC GCGCG CGCGC GCGCG-3'

 Table S1. Single-stranded DNA nucleotide sequences used in the present study.

Fig. S1. Circular dichroism spectra showing the aging effects on the supramolecular structure of dC_{20} -templated AgNC at different time. CD spectra of DNA mixed with Ag⁺ (dashed line) and dC_{20} -AgNC immediately formed (ageing time = 0 min; dotted line) are included here for easier reference.

Fig. S2. (A) Wide range ESI mass spectrum of dC_{20} -AgNCs (the number represents the charge of ionized species) and (B) zoomed-in mass spectrum of the 9– peak in (A) showing AgNCs with 6–10 Ag atoms; (C) isotope pattern of the [dC_{20} -Ag₈] peak in (B).

Fig. S3. Circular dichroism spectra showing the aging effects on the supramolecular structure of dG_{20} -templated AgNC at different time. The CD spectra of DNA mixed with Ag⁺ (dashed line) and dG_{20} -AgNC immediately formed (ageing time = 0 min; dotted line) are included here for easier reference.

Fig. S4. (A) Wide range ESI mass spectrum of dG_{20} -Ag₈NCs and (B-D) isotope patterns determining the charges of major peaks observed in (A).

Fig. S5. Photoluminescence spectra of freshly prepared (t = 0.3 h, dash lines) and aged (t = 24 h, solid lines) AgNCs templated by (A) dC₁₅A₅, (B) dC₁₀A₁₀, (C) dC₅A₁₅ DNA sequences. The blue, green and red emission spectra were obtained at the excitation wavelength (λ_{ex}) of 340, 450 and 570 nm respectively.

Fig. S6. Photoluminescence spectra of freshly prepared (t = 0.3 h, dash lines) and aged (t = 24 h, solid lines) AgNCs templated by (A) dC₁₅T₅, (B) dC₁₀T₁₀, (C) dC₅T₁₅ DNA sequences. The blue, green and red emission spectra were obtained at $\lambda_{ex} = 340$, 450 and 540 nm respectively.

Fig. S7. Circular dichroism spectra of the 5'-d[$C_{5n}A_{(20-5n)}$]-3' DNA sequences (n is an integer from 0 to 4).

Fig. S8. Circular dichroism spectra of the 5'-d[$C_{5n} T_{(20-5n)}$]-3' DNA sequences (n is an integer from 0 to 4).

Fig. S9. Photoluminescence spectra of freshly prepared (t = 0.3 h, dash lines) and aged (t = 24 h, solid lines) AgNCs templated by (A) dG₁₅T₅, (B) dG₁₀T₁₀, (C) dG₅T₁₅ DNA sequences ($\lambda_{ex} = 580$ nm).

Fig. S10. Circular dichroism spectra of the 5'-d[G_{5n} T_(20-5n)]-3' DNA sequences (n is an integer from 0 to 4).

Fig. S11. Photoluminescence spectra of freshly prepared (t = 0.3 h, dash lines) and aged (t = 24 h, solid lines) AgNCs templated by (A) dC₁₅G₅, (B) dC₁₀G₁₀, (C) dC₅G₁₅ DNA sequences. The green and red emission spectra were obtained at $\lambda_{ex} = 440$ and 570 nm respectively.

Fig. S12. Circular dichroism spectra of the 5'-d[C_{5n} G_(20-5n)]-3' DNA sequences (n is an integer from 0 to 4).

Fig. S13. Photoluminescence spectra of freshly prepared (t = 0.3 h, dash lines) and aged (t = 24 h, solid lines) AgNCs templated by (A) dG₁₅A₅, (B) dG₁₀A₁₀, (C) dG₅A₁₅ DNA sequences. The green and red emission spectra were obtained at $\lambda_{ex} = 470$ and 570 nm respectively.

Fig. S14. Circular dichroism spectra of the 5'-d[$G_{5n} A_{(20-5n)}$]-3' DNA sequences (n is an integer from 0 to 4).

Fig. S15. (A) Fluorescence spectra of AgNCs templated by $dC_{10}A_{10}$, $dC_{10}T_{10}$, $dG_{10}A_{10}$, $dC_{10}G_{10}$ and their interdigitated counterparts (middle panel) bearing the general formula of $d(XY)_{10}$. All fluorescence spectra were taken at 24 hours after the AgNCs were synthesised. For cytosine-containing sequences, λ_{ex} for blue, green and red emissions are 340, 450 and 570 nm respectively, whilst for guanine-containing sequences, λ_{ex} for green and red emissions are 470 and 570 nm respectively (B) CD spectra of the $dX_{10}Y_{10}$ (dashed lines) and $d(XY)_{10}$ DNA sequences (solid lines) in aqueous solution.