Supplementary Information

Tailoring hierarchical zeolite composites with two distinct frameworks for finetuning product distribution in benzene alkylation with ethanol

Thidarat Imyen,^a Wannaruedee Wannapakdee,^a Somlak Ittisanronnachai,^b Thongthai Witoon,^c Chularat Wattanakit^{*a}

^aDepartment of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, and Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

^bFrontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

^cCenter of Excellence on Petrochemical and Materials Technology, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

Figure S1. XRD patterns of (a) commercial mordenite and (b) pretreated mordenite in alkaline TBAOH solution.

Figure S2. SEM images of (a) commercial mordenite, (b) pretreated mordenite in alkaline TBAOH solution, and (c) ZSM-5-NS.

Figure S3. TEM images of (a) commercial mordenite and (b) ZSM-5-NS.

Figure S4. TEM images with high magnification (100 kX) of (a) MOR@ZSM-5(SS) and (b) MOR@ZSM-5(CS).

Figure S5. SEM-EDS elemental points of (a) MOR@ZSM-5(SS) and (b) MOR@ZSM-5(CS).

Figure S6. (A) ²⁷AI MAS NMR spectra and (B) FTIR spectra of pyridine adsorption in OH region of (a) mordenite, (b) MOR@ZSM-5(SS), (c) MOR@ZSM-5(CS), and (d) ZSM-5-NS.

Figure S7. (A) Reactant conversion (%) and (B) Product selectivity (%) obtained over (a) mordenite, (b) MOR@ZSM-5(SS), (c) MOR-ZSM-5(mix), and (d) ZSM-5-NS in benzene alkylation at 450 °C as a function of time on stream (TOS) for 24 h.

Figure S8. (A) XRD patterns of fresh (a) mordenite, (b) MOR@ZSM-5(SS), (c) MOR@ZSM-5(CS), and (d) ZSM-5-NS and spent (e) mordenite, (f) MOR@ZSM-5(SS), (g) MOR@ZSM-5(CS), and (h) ZSM-5-NS and (B) SEM images of spent (a) MOR@ZSM-5(SS) and (b) MOR@ZSM-5(CS).

Figure S9. Raman spectra of spent catalysts: (a) mordenite, (b) MOR@ZSM-5(SS), (c) MOR@ZSM-5(CS), and (d) ZSM-5-NS taken after the catalytic test for alkylation of benzene with ethanol at 450 °C for 24 h.

Figure S10. N₂ adsorption/desorption isotherms of spent (a) mordenite, (b) MOR@ZSM-5(SS), (c) MOR@ZSM-5(CS), and (d) ZSM-5-NS.

Sample	Si/Al ratio ^a	Crystallinity ^b (%)	Amorphous ^b (%)	
commercial mordenite	9.3	87.9	12.1	
pretreated mordenite	9.1	75.2	24.8	

Table S1. The crystallinity and Si/Al ratio of commercial and pretreated mordenite.

^aestimated from XRF, ^bobtained from XRD pattern.

Table S2. The average reactant conversion and product selectivity obtained at 24 h of TOS for alkylation of benzene with ethanol at 450 °C over different catalysts.

	Conversion (%)			S			
Sample	Ethanol	Benzene	EB	Ethylene	Heavy aromatics (C ₉ +)	T + Xª	Others ^b
mordenite	86.9	23.5	6.2	89.4	0	0.1	4.3
MOR@ZSM-5(SS)	99.8	34.4	46.7	43.1	8.9	0.4	0.9
MOR@ZSM-5(CS)	99.6	44.9	59.3	23.7	15.1	0.5	1.4
MOR-ZSM-5(mix)	100.0	33.9	44.7	42.3	12.2	0.2	0.6
ZSM-5-NS	99.9	31.4	42.4	49.7	4.6	2.0	1.3

^aT + X: toluene and xylenes, ^bother products: ethane, propane, propylene, butylene, pentane, and diethyl ether.

Sample	Amount of coke ^a (mmol/g)
mordenite	0.82
MOR@ZSM-5(SS)	0.37
MOR@ZSM-5(CS)	0.34
ZSM-5-NS	0.24

Table S3. The amount of coke formed on different spent catalysts.

^aestimated from O_2 -TPO data.

Table S4. Representative parameters of the Raman bands and in-plane correlation length (*La*) calculated by Ferrari-Robertson expression.

Sample	G _p (cm ⁻¹)	G _w (cm⁻¹)	D ₁ /G	<i>La</i> ª (nm)
mordenite	1565	94	1.34	1.56
MOR@ZSM-5(SS)	1582	80	1.58	1.69
MOR@ZSM-5(CS)	1582	70	1.75	1.78
ZSM-5-NS	1582	59	1.83	1.83

^acalculated by $D_1/G = 0.55 La^2$.

Table S5. Textural properties of different spent zeolite samples after the catalytic test for alkylation of benzene with ethanol at 450 °C for 24 h.

Sample	S _{BET} ^a (m²/g)	S _{micro} b (m²/g)	S _{ext} ^c (m²/g)	V _{total} ^d (cm ³ /g)	V _{micro} e (cm ³ /g)	V _{ext} ^f (cm ³ /g)	%Loss of V _{micro} g
spent mordenite	12	1	11	0.08	0	0.08	100.0
spent MOR@ZSM-5(SS)	331	146	185	0.68	0.06	0.62	60.0
spent MOR@ZSM-5(CS)	398	271	127	0.54	0.14	0.4	36.4
spent ZSM-5-NS	496	234	262	0.89	0.09	0.8	25.0

^aBET specific surface area, ^bmicroporous surface area, ^cexternal surface area, ^dtotal pore volume, ^emicropore volume, ^fV_{ext} = V_{total} – V_{micro}, ^gLoss of microporous volume = $[(V_{micro, fresh} - V_{micro, spent})/V_{micro, fresh}] \times 100.$