Supporting Information

Phase transformation in tungsten oxide nanoplates as a function of post-annealing temperature and its electrochemical influence on

energy storage

Shobhnath P. Gupta, ^a Harishchandra H. Nishad, ^a Sanjay D. Chakane, ^b Suresh W. Gosavi, ^c

Dattatray J. Late,^d Pravin S. Walke ^{a,*}

^a National Centre for Nanoscience's and Nanotechnology, University of Mumbai, Mumbai-400098, India.

^b Department of Physics, Arts, Science and Commerce College, Indapur, Pune-413106,

Affiliated to Savitribai Phule Pune University, Pune-411007, India.

^c Department of Physics, Savitribai Phule Pune University, Pune-411007, India.

^d Centre for Nanoscience and Nanotechnology, Amity University, Mumbai-410206, India.

*Corresponding author: Tel: +918380832183, E-mail: pravin.w@nano.mu.ac.in;

shivshripsw@gmail.com (Pravin Walke)

Contains:

Numerical methods.

Figures S1 to S4.

A. Numerical Methods

1. Specific capacitance calculated from CV curve as given as:

$$C = \frac{\int\limits_{V_a}^{V_b} IdV}{mV(V_b - V_a)} \tag{1}$$

Where, I.dV is total area under the CV curve at given potential range, *m* is mass of material, *V* is total scan range, V_a and V_b are initial and final voltage of given potential range in CV curve respectively.

2. Specific capacitance from charge discharge curve is given as:

$$C = \frac{I\Delta t}{m\Delta V} \tag{2}$$

where I/m is applied current density, Δt is discharge time, ΔV is total applied voltage range.

3. The trasatti equation as follows:

$$1/q^{*}(v) = 1/q_{total}^{*} + av^{1/2}$$
(3)

Where, q^* is the maximum charge stored, ν is scan rate, *a* is constant, q^*_{total} is total charges stored at inner and outer surface of electrode.

Fig. S1. Crystal structure of 2D layered WO₃.H₂O (W80).

Fig. S2. Crystal structure of 3D monoclinic WO₃ (W400).

Fig. S3. Cyclic voltammetry curves of (a) W80, (b) W400 at various scan rates.

Fig. S4. Galvanostatics charge-discharge curves of W80 at various current densities.