Supporting Information

for

Surface vs. core N/S/Se-heteroatom doping of carbon nanodots produces divergent yet consistent optical responses to reactive oxygen species

Xu Geng,^{a,b} Thomas R. Congdon,^a Palapuravan Anees,^a Andrea A. Greschner,^a Fiorenzo Vetrone,^a and Marc A. Gauthier^{a,*}

^a Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada.

^b School of Basic Medical Science, Henan University, Kaifeng 475004, P. R. China

* Corresponding author email: gauthier@emt.inrs.ca

Figure S1 | Full Survey XPS spectra of as-prepared and oxidized CNDs.

Figure S2| Evolution of fluorescence emission of CNDs with time in the presence of different concentrations of H_2O_2 . Data presented as Mean + SD, n = 3.

Figure S3 | ^{13}C NMR spectra of CNDc before and after oxidation with $H_2O_2.$

Figure S4 | 1 H (top) and 13 C NMR (bottom) spectra of CND_{C2} in D₂O before and after oxidation with H₂O₂.

Figure S5 | 1 H (top) 13 C (bottom) NMR spectra of CND_{Se-C2} in D₂O before and after oxidation with H₂O₂.

Figure S6| ^{13}C NMR spectra of CND_M before and after oxidation with $H_2O_2.$

Figure S7 | ^{13}C NMR spectra of CND $_{\text{Se-M}}$ before and after oxidation with H2O2.

Figure S8 | High-resolution XPS spectra (C_{1s} , N_{1s}) of CND_C before and after oxidation with H_2O_2 . Spectral decomposition used to guide the eye.

Figure S9| High-resolution XPS spectra (C_{1s}) of CND_{C2} before and after oxidation with H_2O_2 . Spectral decomposition used to guide the eye.

Figure S10| High-resolution XPS spectra (C_{1s}) of CND_{Se-C2} before and after oxidation with H_2O_2 . Spectral decomposition used to guide the eye.

Figure S11| High-resolution XPS spectra (C_{1s} , N_{1s}) of CND_M before and after oxidation with H_2O_2 . Spectral decomposition used to guide the eye.

Figure S12 | High-resolution XPS spectra (C_{1s} , N_{1s}) of CND_{Se-M} before and after oxidation with H_2O_2 . Spectral decomposition used to guide the eye.

Figure S13 | Absorbance and fluorescence spectra (λ ex 360 nm) of CNDs before and after oxidation.

Figure S14| Evolution of fluorescence emission of CND_c with time in 200 mM phosphate buffer pH 7.4 under UV irradiation (256 nm, 4 W). Data presented as Mean ± SD, n = 3.