Supporting Information for: Optimisation of the Thermoelectric Efficiency of Zirconium Trisulphide Monolayers through Unixial and Biaxial Strain

In this document we present additional tables and figures that are mentioned in the main text.

ϵ_x	1	2	3	4	5	6
-4 -3 -2 -1 0 1 2 3 4 5	$\begin{array}{c} 1.17\\ 1.12\\ 1.12\\ 1.06\\ 1.00\\ 0.94\\ 0.88\\ 0.85\\ 0.88\\ 0.88\\ 0.88\end{array}$	$\begin{array}{c} 0.90\\ 0.97\\ 0.97\\ 0.98\\ 1.00\\ 1.01\\ 1.02\\ 1.03\\ 1.02\\ 1.02\\ 1.02\end{array}$	$\begin{array}{c} 1.19\\ 1.10\\ 1.05\\ 1.00\\ 0.95\\ 0.91\\ 0.86\\ 0.91\\ 0.91\\ \end{array}$	$\begin{array}{c} 2.31 \\ 1.37 \\ 1.37 \\ 1.16 \\ 1.00 \\ 0.88 \\ 0.80 \\ 0.71 \\ 0.80 \\ 0.80 \end{array}$	$\begin{array}{c} 3.36 \\ 1.56 \\ 1.56 \\ 1.23 \\ 1.00 \\ 0.82 \\ 0.68 \\ -0.14 \\ 0.68 \\ 0.68 \end{array}$	$\begin{array}{c} 1.55\\ 1.24\\ 1.24\\ 1.12\\ 1.00\\ 0.88\\ 0.78\\ 0.69\\ 0.78\\ 0.78\\ 0.78\end{array}$
$\frac{6}{7}$	0.88 0.88	$1.02 \\ 1.02$	$0.91 \\ 0.91$	0.80 0.80	0.68 0.68	0.78 0.78

Table 1: Average relative variation of the six lowest-lying phonon branches between q = [0.0, 0.0, 0.0]and q = [0.04, 0.0, 0.0], with respect to the unstrained case, for uniaxial strains ϵ_x along the x-axis.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ϵ_y	1	2	3	4	5	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $	$\begin{array}{c} 1.02 \\ 1.07 \\ 0.84 \\ 0.94 \\ 1.00 \\ 0.98 \\ 0.97 \\ 0.96 \\ 0.93 \\ 0.91 \\ 0.90 \end{array}$	$\begin{array}{c} 0.91 \\ 0.94 \\ 0.98 \\ 1.00 \\ 1.00 \\ 1.02 \\ 1.04 \\ 1.06 \\ 1.06 \\ 1.06 \\ 1.06 \end{array}$	$\begin{array}{c} 1.05 \\ 1.04 \\ 1.03 \\ 1.00 \\ 1.00 \\ 0.98 \\ 0.97 \\ 0.96 \\ 0.94 \\ 0.92 \\ 0.91 \end{array}$	$\begin{array}{c} 2.74\\ 2.04\\ 1.48\\ 1.09\\ 1.00\\ 1.25\\ 0.61\\ 1.02\\ 0.70\\ 0.84\\ 1.02 \end{array}$	$\begin{array}{c} 2.16\\ 1.65\\ 1.33\\ 1.13\\ 1.00\\ 0.89\\ 0.78\\ 0.72\\ 0.67\\ 0.64\\ 0.63\end{array}$	$\begin{array}{c} 1.76 \\ 1.37 \\ 1.15 \\ 1.04 \\ 1.00 \\ 0.98 \\ 0.99 \\ 1.05 \\ 1.19 \\ 1.43 \\ 1.79 \end{array}$

Table 2: Average relative variation of the six lowest-lying phonon branches between q = [0.0, 0.0, 0.0]and q = [0.0, 0.04, 0.0], with respect to the unstrained case, for uniaxial strains ϵ_y along the y-axis.

ϵ_b	1	2	3	4	5	6
-4	1.22	0.62 0.84	1.21	2.08	3.03	1.64 1 39
-2 -1	$1.02 \\ 1.07$	$0.91 \\ 0.98 \\ 0.98$	$0.98 \\ 1.05$	1.01 1.01 1.15	0.98 1.23	$ \begin{array}{c} 1.09 \\ 0.99 \\ 1.11 \end{array} $
$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} 1.00\\ 0.94 \end{array}$	$1.00 \\ 1.03$	$1.00 \\ 0.95$	$\begin{array}{c} 1.00\\ 0.88 \end{array}$	$1.00 \\ 0.81$	$\begin{array}{c} 1.00 \\ 0.88 \end{array}$
$\frac{2}{3}$	$\begin{array}{c} 0.88\\ 0.84 \end{array}$	$\begin{array}{c} 1.07 \\ 1.09 \end{array}$	$\begin{array}{c} 0.90 \\ 0.85 \end{array}$	$\begin{array}{c} 0.80\\ 0.71 \end{array}$	0.40 -0.12	$\begin{array}{c} 0.78 \\ 0.70 \end{array}$
4 5 6	$0.80 \\ 0.75 \\ 0.71$	$1.10 \\ 1.11 \\ 1.11$	$0.80 \\ 0.75 \\ 0.68$	$0.65 \\ 0.59 \\ 0.48$	-0.11 -0.10	$0.63 \\ 0.57 \\ 0.51$
0 7	$0.71 \\ 0.68$	$1.11 \\ 1.12$	$0.68 \\ 0.64$	$0.48 \\ 0.48$	-0.09	$0.51 \\ 0.42$

Table 3: Average relative variation of the six lowest-lying phonon branches between q = [0.0, 0.0, 0.0]and q = [0.04, 0.0, 0.0], with respect to the unstrained case, for biaxial strains ϵ_b .

ϵ_b	1	2	3	4	5	6
-4 -3 -2 -1 0 1 2 3	$1.05 \\ 1.07 \\ 1.04 \\ 0.83 \\ 1.00 \\ 0.98 \\ 0.97 \\ 0.95$	$\begin{array}{c} 0.70 \\ 0.86 \\ 0.98 \\ 0.98 \\ 1.00 \\ 1.03 \\ 1.06 \\ 1.08 \end{array}$	$1.02 \\ 1.03 \\ 0.98 \\ 1.02 \\ 1.00 \\ 0.99 \\ 0.98 \\ 0.96$	$\begin{array}{c} 43.91 \\ 6.65 \\ 0.08 \\ 1.86 \\ 1.00 \\ 0.72 \\ 0.19 \\ 0.54 \end{array}$	$\begin{array}{c} 1.31 \\ 2.25 \\ 0.98 \\ 1.20 \\ 1.00 \\ 0.87 \\ 0.76 \\ -1.24 \end{array}$	$\begin{array}{c} -0.72 \\ 2.06 \\ 0.98 \\ 1.19 \\ 1.00 \\ 0.87 \\ 0.76 \\ 0.66 \end{array}$
	$\begin{array}{c} 0.93 \\ 0.91 \\ 0.89 \\ 0.99 \end{array}$	1.09 1.10 1.11 1.11	$\begin{array}{c} 0.95 \\ 0.93 \\ 0.92 \\ 0.91 \end{array}$	1.31 2.48 7.82 7.54	-3.76 -3.51 -3.25 -3.95	$\begin{array}{c} 0.58 \\ 0.49 \\ 0.11 \\ 0.05 \end{array}$

Table 4: Average relative variation of the six lowest-lying phonon branches between q = [0.0, 0.0, 0.0]and q = [0.0, 0.04, 0.0], with respect to the unstrained case, for biaxial strains ϵ_b .

Figure S1: Effect of the electron concentration on the directional Seebeck coefficient S_x (a and c) when strain is applied in the x direction and S_y (b and d) in the y direction and along both axes (e and f) of ZrS₃ monolayers.

Figure S2: Effect of the electron concentration on the directional electrical conductivity σ_x (a and c) when strain is applied in the x direction and σ_y (b and d) in the y direction and along both axes (e and f) of ZrS₃ monolayers.

Figure S3: Effect of the electron concentration on the directional electronic contribution to the thermal conductivity $\kappa_{el,xx}$ (a and c) when strain is applied in the x direction and $\kappa_{el,yy}$ (b and d) in the y direction and along both axes (e and f) of ZrS₃ monolayers.

Figure S4: Strains of ZrS_3 monolayer (red dots) in the y (a) and x (b) axis collected at the end of the PBE geometry relaxation upon uniaxial stresses applied along the x and y direction, respectively. Linear fits are made with dashed lines to extract the Poisson's ratio for each direction

Figure S5: Heat capacity C_v (a and c) when strain is applied in the x direction and $C_{v,y}$ (b and d) in the y direction and along both axes (e and f) of ZrS_3 monolayers.

Figure S6: Normalised cumulative function of the components of the tensor of the lattice thermal conductivity $\kappa_{ph,xx}^{cum}$ (panels a, c, and e) and $\kappa_{ph,yy}^{cum}$ (panels b, d, and f) for a number of uniaxial strains ϵ_x and ϵ_y biaxial ϵ_b as a function of the phonon frequency.

Figure S7: Normalised modal decomposition of the components of the thermal conductivity tensor $\kappa_{ph,xx}^{cum}$ (panels a, c, and e) and $\kappa_{ph,yy}^{cum}$ (panels b, d, and f) for a number of uniaxial strains ϵ_x and ϵ_y biaxial ϵ_b .