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S1 Detailed derivation of multipoles and amend-
ments

Any electric and magnetic field can be represented by six quanti-
ties, however, only four of them are independent. Therefore, we
can describe electric and magnetic fields using four quantities:
the scalar potential (Φ), and the three components of the vec-
tor potential, (A). Figure 1 (in main text) shows a particle of an
arbitrary shape at the origin of coordinate system O. Assuming
Lorenz gauge condition, retarded potentials of electromagnetic
field produced by such arbitrary shaped source in the medium
with permittivity of εε0 (where ε0 is electric constant and ε is di-
mensionless relative permittivity) and permeability µµ0. The A
vector potential and Φ scalar potential are:

Φ(R, t) =
1

4πεε0

∫
V

ρ

(
r, t− |R−r|

v

)
|R− r|

dV (S1)

A(R, t) =
µµ0

4π

∫
V

J
(

r, t− |R−r|
v

)
|R− r|

dV (S2)

where v = 1√
εε0µµ0

is the speed of light in a medium, ρ is the
electrical charge density, r is the distance vector to the volume
dV of the particle and R is the distance vector to the observation
point. We will denote modulus of vectors by usual letters: r ≡ |r|,
R≡ |R|.

Considering the field in the region R� r, we can expand |R−r|
into Taylor series. We use Einstein notation and take the sum
over all pairs of repeated indices. Next, we consider the time
dependence of potentials:

t− |R− r|
v

= t− R
v

√
1−2η(r̂ · R̂)+η2

η ≡ r/R

(S3)
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For small η , we obtain:

Ji

(
r, t− |R− r|

v

)
= Ji(r, t ′)+ J̇i(r, t ′)

(r̂ · R̂)

v
η

− J̇i(r, t ′)
1

2Rv
R2

η
2 + J̇i(r, t ′)

(r̂ · R̂)2

2Rv
R2

η
2

+ J̈i(r, t ′)
(r̂ · R̂)2

2v2 R2
η

2 + . . .

(S4)

Substituting the definition of η into the series:

Ji

(
r, t− |R− r|

v

)
= Ji(r, t ′)+ J̇i(r, t ′)

r j

vR
R j

− J̇i(r, t ′)
r2

2Rv
+ J̇i(r, t ′)

r jrk

2R3v
R jRk

+ J̈i(r, t ′)t ′
r jrk

2R2v2 R jRk + . . .

(S5)

The series is considerably simplified by limiting the consideration
to far-field (i.e. λv/cR� 1 for all important wavelength compo-
nents of the emitted radiation):

Ji(r, t ′+δ t) = Ji(r, t ′)+
∂Ji(r, t ′)

∂ t ′
δ t

+
1
2

∂ 2Ji(r, t ′)
∂ t ′ 2

δ t2 +
1
6

∂ 3Ji(r, t ′)
∂ t ′3

δ t3 + . . .

(S6)

where δ t = t−R/v which is equivalent to:

Ji(r, t ′+δ t) = Ji + J̇i
R j

vR
r j + J̈i

R jRk

2v2R2 r jrk

+
...
Ji

R jRkRm

6v3R3 r jrkrm + . . .

(S7)

Where the overdot is the partial derivative over the retarded time.

Consider the Taylor series expansion of the function 1/|R− r|:

1
|R− r|

=
1
R
+

Riri

R3 +
3

2R5 RiR j

− 1
3

δi jR2rir j + · · · ≈
1
R

(S8)
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We neglect high order terms except the zeroth-order term since
all other terms can be suppressed by moving the detector shown
in Fig. 1 (in main text) far enough from the source. This logic
applies here and is technically correct. However, we note that
in case of Equation (S7), one should include higher order terms
since Ji could be an oscillatory function of time. In this case even
a small change in the argument could lead to the large change in
the function value.

Finally, for the vector potential, we obtain:

A(R, t) =
µµ0

4πR

[∫
V

JdV +
Ri

vR

∫
V

J̇ri dV

+
R jRk

2v2R2

∫
V

J̈r jrk dV

+
R jRkRm

6v3R3

∫
V

...
J r jrkrm dV + . . .

]
(S9)

A similar equation can be obtained for the scalar potential.

S1.1 Electric dipole moment and first amendment

Consider the integral
∫

Ji dV in the first term in Equation (S9). To
treat this term, we consider the continuity equation

∂ρ

∂ t
+divJ = 0 (S10)

utilizing the auxiliary equation we obtain

∇(Jri) = (J∇)ri + ri(∇J) = Ji− ρ̇ri. (S11)

By integrating by parts the left side of Equation (S11) and rear-
ranging terms, we obtain∫

V
Ji dV =

∫
V

ρ̇ri dV +
∫

V
∇(Jri)dV

= ḋi +
∮

S
(nS ·J)ri dS = ḋi +Ui.

(S12)

where di is ith component of the electric dipole moment:

d =
∫

V
ρ(r)rdV (S13)

The second term denoted by Ui, which is ith component of some
amendment vector, is obtained as a surface integral:

Ui =
∮

S
(nS ·J)ri dS (S14)

where nS is the external normal vector to the surface S of the
integration volume V . Namely this integral (and the following
surface integrals) does provide the necessary amendment: For a
closed system it turns to be zero, but for non-isolated system it
gives a nonzero contribution.

S1.2 Electric quadrupole moment, magnetic dipole moment
and second amendment

Consideration of the second term in the vector potential in Equa-
tion (S9) leads to:

R j

∫
V

Jir j dV (S15)

To treat it, we will use the following auxiliary expression:

R j

∫
V

∇(Jrir j)dV = R j

∫
V
(ρ̇rir j + JiR jr j + riR jJ j)dV

=−Q̇i jR j +2
∫

V
Ji(R jr j)dV +

∫
V
[ri(R jJ j)− Ji(R jr j)]︸ ︷︷ ︸
b(ac)−c(ab)=[a×[b×c]]

dV

=−Q̇i jR j +2
∫

V
Ji(R jr j)dV +R×

∫
V
[r×J]dV

(S16)

From here we can obtain:

R j

∫
V

Jir j dV =
1
2

Q̇i jR j +[m×R]+
1
2

U ′i jR j (S17)

where tensor Q̂ is the electric quadrupole moment:

Qi j =
∫

v
ρ(r)rir j dV (S18)

vector m is the magnetic dipole moment:

m =
1
2

∫
V
[r×J]dV (S19)

The magnetic moment appears without involving magnetic per-
meability µ, but rather based only on the dielectric permittivity
ε. For this reason, we obtain the resonance effect for high index
dielectrics. We denote the second order amendment tensor Û ′ as:

U ′i j =
∮

S
(nS ·J)rir j dS (S20)

S1.3 Electric octupole, magnetic quadrupole moments and
third amendment

The third term in Equation (S9) leads to:

R jRk

∫
V

Jir jrk dV (S21)

By analogy with the previous cases, consider an auxiliary equa-
tion of the form:

R jRk

∫
V

∇(Jrir jrk)dV =−R jRk

∫
V

ρ̇rir jrk dV

+
∫

V

{
Ji(R jr j)(Rkrk)+ ri(R jJ j)(Rkrk)

}
dV

+
∫

V
ri(R jr j)(RkJk)dV

=−Ȯi jkR jRk +3R jRk

∫
V

Jir jrk dV

+
∫

V

{
ri(R jJ j)(Rkrk)− Ji(R jr j)(Rkrk)

}
dV

+
∫

V

{
ri(R jr j)(RkJk)− Ji(R jr j)(Rkrk)

}
dV

(S22)
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Considering the third term in the last equation, the fourth term is
treated similarly:∫

V

{
ri(R jJ j)(Rkrk)− Ji(R jr j)(Rkrk)

}
dV

=
∫

V

[
R× [r×J]

]
(rR)dV = R jRkεi jq

∫
V

r×Jqrk dV

= R×
(∫

V

{
[r×J]⊗ r

}
dV
)

R

(S23)

where⊗ is the tensor product. Summarizing Equations (S22) and
(S23), we obtain the following result for Equation (S21):

R jRk

∫
V

Jir jrk dV

=
1
3

Ȯi jkR jRk−R×
(

2
3

∫
V

{
[r×J]⊗ r

}
dV
)

R

+
1
3

R jRk

∮
S
(nS ·J)rir jrk dS

=
1
3

Ȯi jkR jRk +[R×MR]+
1
3

U ′′i jkR jRk

(S24)

Where, Ô is the electric octupole tensor:

Oi jk =
∫

V
ρ(r)rir jrk dV (S25)

where M̂ is the magnetic quadrupole tensor:

Mqm =
2
3

∫
V
[r×J]qrm dV (S26)

and we denote Û ′′ as the amendment which is the third order
tensor:

U ′′i jk =
∮

S
(nS ·J)rir jrk dS (S27)

Summarizing all above, we can write the multipole expansion
of the vector potential:

A(R, t) =
µ0µ

4πR

[
ḋ+U+

1
2v

Q̈n+
1
v
[ṁ×n]

+
1
2v

U̇ ′n+
1

6v2
...
Onn+

1
2v2 [n× M̈n]

+
1

6v2 Ü ′′nn+ . . .

]
(S28)

S1.4 Electric multipole moments

We briefly overview here the family of electric multipole mo-
ments:

q =
∫

V
ρ(r)dV — full charge

di =
∫

V
ρ(r)ri dV — electric dipole moment

Qi j =
∫

V
ρ(r)rir j dV — electric quadrupole moment

Oi jk =
∫

V
ρ(r)rir jrk dV — electric octupole moment

In case of monochromatic time dependence

ρ(r, t) = ρ(r)e−iωt ,

it can be useful to express electric multipole moments as functions
of currents. From the continuity equation, we obtain:

∂ρ

∂y
=−divJ ⇒ ρ =

1
iω

divJ. (S29)

using this relation, we can describe the electric multipole mo-
ments as function of the currents. The full charge is defined as:

q =
∫

V
ρ dV =

1
iω

∫
V

divJdV =
1

iω

∮
S
(nSJ)dS (S30)

Electric dipole moment is defined as:

di =
∫

V
ρri dV =

1
iω

∫
V

divJri dV

=
1

iω

∫
V

∇(Jri)dV − 1
iω

∫
V
(J∇)ri dV

=
1

iω

∮
S
(nSJ)ri dV − 1

iω

∫
V

Ji dV

(S31)

Electric quadrupole moment is defined as:

Qi j =
∫

V
ρrir j dV =

1
iω

∫
V

divJrir j dV

=
1

iω

∫
V

∇(Jrir j)dV − 1
iω

∫
V
(J∇)rir j dV

=
1

iω

∮
S
(nSJ)rir j dV − 1

iω

∫
V
(Jir j + J jri)dV.

(S32)

Operating with quadrupole moments, it is usually preferred to
deal with traceless tensors. The tensor, defined in Equation (S32),
has a nonzero trace (denoted as qt). However, this is not impor-
tant for our numerical treatment. If necessary, Equation (S32) can
easily be converted into the traceless one using the well-known
relation: Q′ = Q−qt ∗ I, where I is the diagonal unit tensor.
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(a) (b)

O O

ρ(r) ρ(r-δr)

δr

Fig. S1 (a) Homogeneous medium with charge density depending on
point ρ(r) and some arbitrary volume inside it. (b) The shift of the whole
medium by some infinitesimal vector δr leads to the charge density at
point r to become ρ(r−δr).

Further, for the electric octupole moment we develop:

Oi jk =
∫

V
ρrir jrk dV =

1
iω

∫
V

divJrir jrk dV

=
1

iω

∫
V

∇(Jrir jrk)dV − 1
iω

∫
V
(J∇)rir jrk dV

=
1

iω

∮
S
(nSJ)rir jrk dV

− 1
iω

∫
V
(Jir jrk + riJ jrk + rir jJk)dV

(S33)

S1.5 Representation of multipole moments through polar-
ization

For nanophotonics applications, it can be suitable to represent the
multipole moments through polarization induced in dielectric1,2.
For this, we first consider a homogeneous medium with a charge
density continuously varying from point to point, and thus being
a function of the radius vector. We choose some arbitrary volume
V inside it (Fig. S1a), and shift the whole medium by some in-
finitesimal vector δr (Fig. S1b), to evaluate the change in charge
density inside the volume.

The charge inside the volume V is

q =
∫

V
ρ(r)dV, (S34)

and the charge inside the volume after the shift of the medium is

q+δq =
∫

V
[ρ(r)+δρ(r)]dV

=
∫

V
ρ(r−δr)dV =

∫
V

[
ρ(r)−∇ρ(r)δr

]
dV

(S35)

If the integrals over the arbitrary volumes are equal, then the
integrand functions are also equal.

δρ(r) =−∇ρ(r)δr (S36)

Now, we can introduce the infinitesimally small polarization
vector δP. Since δr in Equation (S36) does not depend on r, we
manipulate with Equation (S36) as[

∇ρ(r)
]
δr = ∇ ·

[
ρ(r)δr

]
= ∇δP (S37)

where we define:
∇δP =−δρ(r) (S38)

Since dielectrics are electroneutral, the initial charge inside the
volume is zero. Therefore, the whole charge inside any volume is
the induced charge. So we can write electric multipole moments
through polarization using Equation (S38).

The electric dipole moment is defined as:

di =
∫

V
ρridV =−

∫
V

ridivPdV =

−
∫

V
(∇ ·Pri)dV +

∫
V
(P ·∇ri)dV =

−
∮

S
(nS ·Pri)dS+

∫
V

Pi dV

(S39)

The electric quadrupole moment is defined as:

Qi j =
∫

V
ρrir j dV =−

∫
V

divPrir j dV =

−
∫

V
(∇ ·Prir j)dV +

∫
V
(P∇)rir j dV =

−
∮

S
(nSP)rir j dS+

∫
V
(Pir j +Pjri)dV

(S40)

The electric octupole moment is defined as:

Oi jk =
∫

V
ρrir jrk dV =−

∫
V

divPrir jrk dV =

−
∫

V
(∇ ·Prir jrk)dV +

∫
V
(P∇)rir jrk dV =

−
∮

S
(nSP)rir jrk dS+

∫
V
(Pir jrk +Pjrirk +Pkrir j)dV

(S41)

We rewrite the magnetic multipole moments as functions of
polarization. Using the continuity equation and Equation (S38):

∂ρ

∂ t
−∇J = 0

∂ (∇P)
∂ t

= ∇J

We replace the partial derivatives ∂/∂ t with ∇, so

J =
∂P
∂ t

and assuming that the polarization P is time-harmonic, we obtain

J =−iωP (S42)

Finally for the magnetic dipole we obtain:

m =
1
2

∫
V
[r×J]dV =

iω
2

∫
V
[P× r]dV (S43)

The magnetic quadrupole is defined as:

Mi j =
2
3

∫
V
[r×J]ir j dV =

2iω
3

∫
V
[P× r]ir j dV (S44)
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S1.5.1 Electric and magnetic fields

To obtain equations for fields, we consider the equation for vector
potential:

A(R, t) =
µµ0

4πR

(
ḋ+U+

1
2v

¨̂Qn+

+
1
v

[
ṁ×n

]
+

1
2v

˙̂U ′n+
1

6v2

...
Ônn

+
1

2v2

[
n× ¨̂Mn

]
+

1
6v2

¨̂U ′′nn+ . . .

)
(S45)

Magnetic field is expressed through the vector potential:

B = ∇×A (S46)

and when we take rotor of the vector potential, we neglect the
terms that occur due to factor 1/R in each term of the sum be-
cause of higher order of smallness (where εi jk denotes the Levi-
Civita symbol),

∇× 1
R

f(t ′) = eiεi jk

(
−

R j

R3 fk(t
′)−

R j

cR2 ḟk(t
′)

)

=
1

R2 [f×n]+
1

vR
[ḟ×n]≈ 1

vR
[ḟ×n]

(S47)

We write down the expression for the rotor of each component
of the sum in Equation (S45):

[∇× ḋ] = eiεi jk∇ jḋk = eiεi jk
∂ ḋk

∂ t ′
∇ j

(
t− R

c

)
=−1

v
eiεi jkn j d̈k =−

1
v
[n× d̈]

(S48)

[∇×U] =−1
v
[n× U̇] (S49)

1
2v

[∇× ¨̂Qn] =
1
2v

eiεi jk

(
−4− 1

v

...
Qksn jns

+ Q̈ks
δ js

R
+ Q̈ks

R jRs

R3

)
≈− 1

2v2

[
n×

...
Q̂n
] (S50)

1
v
[∇× [ṁ×n]] =− 1

v2 [n× [m̈×n]] (S51)

1
2v

[
∇×

(
˙̂U ′n
)]
≈− 1

2v2

[
n× ¨̂U ′n

]
(S52)

1
6v2

[
∇×

(...
Ônn

)]
≈− 1

6v3 eiεi jk
....
O kstn jnsnt

=− 1
6v3

[
n×

....
Ô nn

] (S53)

1
2v2

[
∇×

[
n× ¨̂Mn

]]
=

1
2v2 eiεi jk∇ j εklm

Rl

R
M̈ms

Rs

R

=
1

2v2 eiεi jkεklm

(
Rs

R2 δ jlM̈ms +
Rl

R2 δ jsM̈ms

−2
R jRlRs

R5 M̈ms−
...
Mms

R jRlRs

cR3

)

≈− 1
2v3

[
n×

[
n×

...
M̂n
]]

(S54)

1
6v2

[
∇×

(
¨̂U ′′nn

)]
≈− 1

6v3

[
n×

...
Û ′′nn

]
(S55)

Thus, the magnetic field, while remaining only terms of the first
order of smallness, is:

B =
µµ0

4πRv

(
[d̈×n]+ [U̇×n]+

1
2v

[...
Q̂n×n

]
+

1
v
[n× [n× m̈]]+

1
2v

[
¨̂U ′n×n

]
+

1
6v2

[
(
....
Ô n) ·n×n

]
+

1
2v2

[
n×

[...
M̂n×n

]]
+

1
6v2

[...
Û ′′nn×n

])
(S56)

In this form, the only remaining term is the first order of small-
ness. It can be seen that this equation can be written in short
form:

B =
1
v
[Ȧ×n] (S57)

which corresponds to a vector H in a plane wave3.
The electric field is expressed in terms of the potentials as

E =−Ȧ−∇Φ (S58)

Finally, remaining only terms of the first order of smallness, we
obtain:

E =
1

4πRv2εε0

(
[[d̈×n]×n]+ [[U̇×n]×n]

+
1
2v

[[...
Q̂n×n

]
×n
]
+

1
v
[m̈×n]

+
1
2v

[[
¨̂U ′n×n

]
×n
]
+

1
6v2

[[....
Ô nn×n

]
×n
]

+
1

2v2

[
n×

...
M̂n
]
+

1
6v2

[[...
Û ′′nn×n

]
×n
])

(S59)

Then, Equation (S59) also can be written in a simple form:

E = v[B×n] = [[Ȧ×n]×n] (S60)

which also corresponds to an electric field E in a plane wave3.
Both equations for B (S56) and E (S59) are the same as plane

wave illumination. After the terms ∼ 1/R, we consider the field at
distances much larger compared to the system and at a sufficient
distance from the source arbitrary shaped wavefront, and this can
be locally considered as a plane wave.

Assuming plane wave illumination, E(r, t) = E0ei(ωt−k·r) where
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k is the wave vector of the incident wave,

ω = k0c = kv (S61)

c = 1/
√

µ0ε0 (S62)

v = 1/
√

µµ0εε0 (S63)

k = k0
√

µε (S64)

then we can write the equation for the scattered electric field in
the following form:

E =
k2

4πε0ε

eikR

R

(
[n× [d×n]]+

i
kv

[n× [U×n]]

+
ik
2
[n× [Q̂n×n]]+

1
v
[m×n]

+
1
2v

[n× [Û ′n×n]]+
k2

6
[n× [n× Ônn]]

+
ik
2v

[n× M̂n]+
ik
6v

[n× [n×Û ′′nn]
)

(S65)

The factor eikR appears in this equation, as the phase shift of
the scattered wave between the points r and R.

S1.5.2 Intensity

In this section we provide a tool for analysing the ’strengths’ of
different multipole excitations which together represent the cur-
rent density within an arbitrarily chosen volume (see Fig. 1 in
main text). The problem we are solving is that one cannot di-
rectly compare different multipoles, e.g. the electric dipole and
quadrupole moments, since they have different units. Neverthe-
less, all multipoles represent an excitation in the system, and thus
there should be a way of comparing them. Here we propose to
use the power of the light that would be emitted by the different
multipoles, if there were no other currents outside the consid-
ered volume. Thus electric quadrupole excitation, for example,
could be said to be ’stronger’ than electric dipole excitation, if the
power emitted by the quadrupole (in all directions), was greater
than that of the electric dipole.

Using the Poynting vector definition4, the energy radiated Π

into solid angle dΩ can be expressed as:

dΠ =
1
2

√
εε0

µµ0
|E|2R2 dΩ (S66)

The total energy scattered on such system per unit time (intensity
of scattered light) can be obtained by integrating over all solid
angles:

I =
∫

Ω

dΠ

To perform the integral above, we average dΠ over all angles.
Therefore, the total energy can be obtained by multiplication of
the average power, dΠ, by the solid angle of a sphere:

I = 4π dΠ (S67)

In dΠ only n, a unit vector into an observation point, depends

on a direction. By averaging, we use several useful and well-
known relations (see, e.g.,5).

Eventually, we obtain the expression for the intensity of light
scattered per unit time:

I =
k4

12πvµµ0ε2ε02 |d|
2 +

k2

12πvε2ε02 |U|
2

+
k6

32πvµµ0ε2ε02

(
1
5

Qi jQ∗i j−
1

15
QiiQ∗j j

)

+
k4

12πvεε0
|m|2 + k4

32πvεε0

(
1
5

U ′i jU
′∗
i j −

1
15

U ′iiU
′∗
j j

)

+
k8

288πvµµ0ε2ε02

(
8

105
Oi jkO∗i jk−

2
105

Oi j jO∗ikk

)

+
k6

32πvεε0

(
1
5

Mi jM∗i j−
1

15
MiiM∗j j

)

+
k6

288πvεε0

(
8

105
U ′′i jkU ′′∗i jk−

2
105

U ′′i j jU
′′∗
ikk

)

(S68)

Basically, different terms depend differently on optical contrast of
the medium ε.
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