Supporting Information for

Hollow N-doped carbon nanofibers bring superior potassium-storage

performance

Ya Ru Pei, Ming Zhao, Hong Yu Zhou, Chun Cheng Yang*, Qing Jiang

Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China

^{*} Corresponding author. Tel.: +86-431-85095371; Fax: +86-431-85095876; E-mail: ccyang@jlu.edu.cn (C. C. Yang).

[†] Electronic Supplementary Information (ESI) available. See DOI: 10.1039/x0xx00000x

Supplementary Note

Electrochemical performances of HNCNFs-700 in sodium-ion batteries (SIBs) Electrochemical measurements

The electrochemical Na-storage performances of HNCNFs-700 were also investigated using coin-type (CR2025) half-cell configurations vs. Na metal as the counter electrode, which were assembled in an Ar-filled glove box ($[O_2] < 1$ ppm, $[H_2O] < 1$ ppm). The separator was Whatman glass fiber (GF/D) and the electrolyte was the mixture of ethylene carbonate and diethyl carbonate with a volume ratio of 1:1, containing 1 M NaClO₄ and 5 wt% fluoroethylene carbonate. The working electrodes were fabricated by mixing 70 wt% HNCNFs-700, 20 wt% conductive agent (Super P) and 10 wt% binder (Na-CMC) using deionized water as the solvent. The obtained slurry was pasted uniformly on Cu foil and dried in vacuum at 70 °C for 12 h. Then the electrodes were cut into discoidal pieces with a diameter of 12 mm and the mass loading of active materials is 0.4-0.6 mg cm⁻². Galvanostatic charge/discharge cycling tests were performed using a LAND CT2001A battery testing system in the voltage range of 0.01-3 V (vs. Na⁺/Na). Cyclic voltammetry (CV) measurements were carried out on an Ivium-n-Stat electrochemical workstation (Ivium Technologies) with a potential scan rate of 0.1 mV s⁻¹ between 0.01-3.0 V (vs. Na^{+}/Na).

Electrochemical performances

The electrochemical performances of HNCNFs-700 as an anode in SIBs are shown in Fig. S14. CV curves of the HNCNFs-700 electrodes were measured at a scan rate of 0.1 mV s⁻¹ within 0.01-3.0 V (vs. Na⁺/Na) (see Fig. S14a). The broad reduction peak at approximately 0.5 V in the first scan, which disappears at the subsequent scans, can be ascribed to the formation of SEI films. The sharp reversible cathodic peak close to 0.01 V as well as the wide anodic peak are related to the intercalation and deintercalation of Na⁺ into/from carbon matrix, respectively. During the following cycles, two broad peaks around 1.2 V and 0.8 V are attributed to the interaction of Na⁺ into species of N atoms. The CV curves from the second cycle to the fifth cycle are well overlapped, which demonstrates an excellent reversibility of the HNCNFs-700 electrode. Fig. S14b shows the galvanostatic charge/discharge voltage profiles of the HNCNFs-700 electrode for the 1st, 2nd, 50th, 100th and 200th cycles at 0.1 A g⁻¹. The initial discharge and charge capacities are 788.6 and 345.4 mAh g⁻¹, respectively, corresponding to an initial CE of 43.8%. The HNCNFs-700 electrode delivers a reversible capacity of 308.3 mAh g⁻¹ after 200 cycles with CE close to 100% (see Fig. S14c). The HNCNFs-700 electrode also shows superior rate performance with reversible capacities of 323.7, 278.6, 245.9, 229.8, 218.2, 209.6, 188.3 and 169.5 mAh g⁻¹ at 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2 and 5 A g⁻¹, respectively (see Fig. S14d). When the current density switches back to 0.1 A g⁻¹, the HNCNFs-700 electrode recovers a specific capacity of 300.8 mAh g⁻¹ rapidly and then remains stable for further cycling. Besides, the HNCNFs-700 electrode maintains a high reversible capacity of 223.2 mAh g⁻¹ at 1 A g⁻¹ after 5000 cycles with CE close to 100% (see Fig. S14e). This suggests HNCNFs-700 is also an excellent anode material for SIBs.

The Na-storage behavior of the HNCNFs-700 electrode was also analyzed by CV measurements at different scan rates from 0.2 to 1 mV s⁻¹ (see Fig. S15a). The calculated *b* values for cathodic and anodic peaks are also both much closer to 1, indicating the Na-storage behavior is dominated by surface capacitive effect. The pseudocapacitive contributions of the HNCNFs-700 electrode at different scan rates are displayed in Fig. S15d.

Supplementary Figures

Fig. S1 FT-IR spectrum of PANI nanofibers.

Fig. S2 N₂ adsorption/desorption isotherms and the corresponding pore size distribution (the inset) of (a) HNCNFs-600 and (b) HNCNFs-800.

Fig. S3 SEM images of (a) PANI precursor, (b) HNCNFs-600, and (c) HNCNFs-800.

Fig. S4 TEM images of (a) HNCNFs-600 and (b) HNCNFs-800.

Fig. S5 (a) XPS survey spectrum of HNCNFs-600. (b), (c) and (d) are high-resolution XPS spectra of C 1s, O 1s and N 1s, respectively.

Fig. S6 (a) XPS survey spectrum of HNCNFs-800. (b), (c) and (d) are high-resolution XPS spectra of C 1s, O 1s and N 1s, respectively.

Fig. S7 CV curves of (a) HNCNFs-600 and (b) HNCNFs-800 electrodes at a scan rate

Fig. S8 Galvanostatic charge/discharge curves of (a) HNCNFs-600 and (b) HNCNFs-800 electrodes for the 1st, 2nd, 50th, 100th and 200th cycles at a current density of 0.1 A g^{-1} .

Fig. S9 Galvanostatic charge/discharge curves of the HNCNFs-700 electrode at various current densities.

Fig. S10 Rate performance of the super P electrode at various current densities.

Fig. S11 (a) EIS of HNCNFs-600, HNCNFs-700 and HNCNFs-800 electrodes in fresh PIBs, where the inset shows the corresponding equivalent circuit diagram. (b) The electrolyte resistance (R_{el}) and charge transfer resistance (R_{ct}) values of HNCNFs-600, HNCNFs-700 and HNCNFs-800 electrodes.

Fig. S12 Cycling performance of the HNCNFs-700 electrode as well as the coulombic efficiency at (a) 2 A g^{-1} for 4000 cycles and (b) 4 A g^{-1} for 2000 cycles.

Fig. S13 Cycling performance of the HNCNFs-700 electrode with different mass loadings at 1 A g^{-1} for 4000 cycles.

Fig. S14 Electrochemical performances of the HNCNFs-700 electrode in SIBs. (a) CV curves of the HNCNFs-700 electrode at a scan rate of 0.1 mV s⁻¹. (b) Galvanostatic charge/discharge curves of the HNCNFs-700 electrode for the 1st, 2nd, 50th, 100th and 200th cycles at 0.1 A g⁻¹. (c) Cycling performance of the HNCNFs-700 electrode as well as the coulombic efficiency at 0.1 A g⁻¹. (d) Rate performance of the HNCNFs-700 electrode at various current densities. (e) Long cycling performance of the HNCNFs-700 electrode as well as the coulombic efficiency at 1 A g⁻¹.

Fig. S15 Electrochemical kinetics analysis in SIBs. (a) CV curves of the HNCNFs-700 electrode at different scan rates from 0.2 to 1 mV s⁻¹. (b) Measurement of *b* value with the relationship between log(i) and log(v). (c) Capacitive and diffusioncontrolled contributions to the charge storage at 0.8 mV s⁻¹. (d) Normalized contribution ratios of capacitive and diffusion-controlled capacities of the HNCNFs-700 electrode at different scan rates.

Fig. S16 Electrochemical kinetics analysis. (a) CV curves of the HNCNFs-600 electrode at different scan rates from 0.2 to 1 mV s⁻¹. (b) Measurement of *b* value with the relationship between log(i) and log(v). (c) Capacitive and diffusion-controlled contributions to the charge storage at 0.8 mV s⁻¹. (d) Normalized contribution ratios of capacitive and diffusion-controlled capacities of the HNCNFs-600 electrode at different scan argument scan rates.

Fig. S17 Electrochemical kinetics analysis. (a) CV curves of the HNCNFs-800 electrode at different scan rates from 0.2 to 1 mV s⁻¹. (b) Measurement of *b* value with the relationship between log(i) and log(v). (c) Capacitive and diffusion-controlled contributions to the charge storage at 0.8 mV s⁻¹. (d) Normalized contribution ratios of capacitive and diffusion-controlled capacities of the HNCNFs-800 electrode at different scan argument scan rates.

Fig. S18 *Ex-situ* XPS analysis. (a) XPS survey spectra of the HNCNFs-700 electrode under the pristine, potassiation and depotassiation states. (b) High-resolution XPS spectra of K 2p.

Fig. S19 Structural characterization and electrochemical performance of KPBNPs in a half cell. (a) XRD pattern. (b) CV curves of the KPBNPs electrode at a scan rate of 0.1 mV s⁻¹. (c) Galvanostatic charge/discharge curves of the KPBNPs electrode for the 1st, 2nd, 10th, 50th and 100th cycles at 0.1 A g⁻¹. (d) Cycling performance of the KPBNPs cathode as well as the coulombic efficiency at 0.1 A g⁻¹.

Supplementary Table

Materials	d_{002}	$I_{\rm D}/I_{\rm G}$	$S_{\rm BET}$	С	Ν	O (at.	9⁄	% of total N 1s	
	(nm)		$(m^2 g^{-1})$	(at.%)	(at.%)	%)	pyridinic N	pyrrolic N	graphitic N
HNCNFs-600	0.416	1.67	29.6	84.5	10.3	5.2	31.3	59.8	8.9
HNCNFs-700	0.409	1.59	34.3	85.2	8.2	6.6	38.1	45.7	16.2
HNCNFs-800	0.401	1.42	26.1	88.3	7.4	4.3	31.7	44.9	23.4

Table S1. Structure properties and surface chemistry of three different HNCNFs.

Table S2. Electrochemical properties of three different HNCNFs.

Materials	Initial	Initial CE	Capacity	Rate	Cycling	R _{ct}
	discharge/charge capacity	(%)	(mAh g ⁻¹) ^a	performance (mAh g ⁻¹) ^b	performance (mAh g ⁻¹) ^c	(Ω)
	(mAh g ⁻¹)					
HNCNFs-600	624.7/312.1	49.9	223.2	121.6	60.5	1850
HNCNFs-700	781.9/410.6	52.5	274.5	139.7	188.4	1320
HNCNFs-800	715.6/374.2	52.3	206.4	70.3	89.5	2050

 $^{\rm a}$ Discharge capacities of the HNCNFs electrodes at 0.1 A g $^{-1}$ after 200 cycles.

 $^{\rm b}$ Discharge capacities of the HNCNFs electrodes at 30 A g^-1.

^c Discharge capacities of the HNCNFs electrodes after 4000 cycles at 1 A g⁻¹.

 Table S3. Comparisons of electrochemical properties of some carbon-based electrode

Materials	Initial CE	Rate performance	Cycling performance	Reference
HNCNFs-700	52.5%	239.6 mAh g ⁻¹ (2 A g ⁻¹)	274.5 mAh g ⁻¹ (200 cycles, 0.1 A g ⁻¹)	This work
		211.0 mAh g ⁻¹ (5 A g ⁻¹)	188.4 mAh g ⁻¹ (4000 cycles, 1 A g ⁻¹)	
		190.2 mAh g ⁻¹ (10 A g ⁻¹)	141.7 mAh g ⁻¹ (4000 cycles, 2 A g ⁻¹)	
		161.7 mAh g ⁻¹ (20 A g ⁻¹)	132.5 mAh g ⁻¹ (2000 cycles, 4 A g ⁻¹)	
		139.7 mAh g ⁻¹ (30 A g ⁻¹)		
Necklace-like N-	~30%	224.3 mAh g ⁻¹ (1 A g ⁻¹)	293.5 mAh g ⁻¹ (400 cycles, 0.2 A g ⁻¹)	Ref. [18] of
doped hollow carbon		204.8 mAh g ⁻¹ (2 A g ⁻¹)	161.3 mAh g ⁻¹ (1600 cycles, 1 A g ⁻¹)	the text
3D N-doped	24.3%	168 mAh g ⁻¹ (1 A g ⁻¹)	137 mAh g ⁻¹ (1000 cycles, 2 A g ⁻¹)	[1]
framework carbon		146 mAh g ⁻¹ (2 A g ⁻¹)		
		115 mAh g ⁻¹ (5 A g ⁻¹)		
		111 mAh g ⁻¹ (10 A g ⁻¹)		
N/O dual-doped	47.12%	205 mAh g ⁻¹ (1 A g ⁻¹)	260 mAh g ⁻¹ (100 cycles, 0.1 A g ⁻¹)	Ref. [39] of
carbon network		181 mAh g ⁻¹ (2 A g ⁻¹)	160 mAh g ⁻¹ (4000 cycles, 1 A g ⁻¹)	the text
		175 mAh g ⁻¹ (5 A g ⁻¹)		
N-doped porous	48.9%	185 mAh g ⁻¹ (10 A g ⁻¹)	$384 \text{ mAh } \text{g}^{-1} (500 \text{ cycles}, 0.1 \text{ A } \text{g}^{-1})$	Ref. [30] of
carbon			226.1 mAh g ⁻¹ (1000 cycles, 1 A g ⁻¹)	the text
			194 mAh g ⁻¹ (1000 cycles, 2 A g ⁻¹)	
			160.5 mAh g ⁻¹ (1000 cycles, 5 A g ⁻¹)	
Highly N-doped	49%	153 mAh g ⁻¹ (2 A g ⁻¹)	248 mAh g ⁻¹ (100 cycles, 0.05 A g ⁻¹)	Ref. [19] of
carbon fibers		126 mAh g ⁻¹ (5 A g ⁻¹)	164 mAh g ⁻¹ (2000 cycles, 1 A g ⁻¹)	the text
		104 mAh g ⁻¹ (10 A g ⁻¹)	146 mAh g ⁻¹ (4000 cycles, 2 A g ⁻¹)	
		101 mAh g ⁻¹ (20 A g ⁻¹)		
N/O dual-doped	25%	118 mAh g ⁻¹ (3 A g ⁻¹)	230.6 mAh g ⁻¹ (100 cycles, 0.05 A g ⁻¹)	Ref. [29] of
hierarchical porous			130 mAh g ⁻¹ (1100 cycles, 1050 mA g ⁻¹)	the text
hard carbon				
Amorphous ordered	63.6%	144 mAh g ⁻¹ (1 A g ⁻¹)	257.4 mAh g ⁻¹ (100 cycles, 0.05 A g ⁻¹)	Ref. [4] of
mesoporous carbon			146.5 mAh g ⁻¹ (1000 cycles, 1 A g ⁻¹)	the text
Ultra-high pyridinic	20%	178 mAh g ⁻¹ (5 A g ⁻¹)	260 mAh g ⁻¹ (120 cycles, 0.05 A g ⁻¹)	[2]
N-doped porous			152 mAh g ⁻¹ (3000 cycles, 1 A g ⁻¹)	
carbon				
Free-standing porous	24.1%	190 mAh g ⁻¹ (2 A g ⁻¹)	270 mAh g^{-1} (80 cycles, 0.02 A g^{-1})	Ref. [13] of
carbon nanofibers		140 mAh g ⁻¹ (5 A g ⁻¹)	211 mAh g ⁻¹ (1200 cycles, 0.2 A g ⁻¹)	the text
paper		100 mAh g ⁻¹ (7.7 A g ⁻¹)		

materials in PIBs reported in open literatures.

Active materials	Mass loading (mg cm ⁻²)	Cycling performance	Reference	
		188.4 mAh g ⁻¹		
		(1 A g ⁻¹ , 4000 cycles)		
IDIOUE 700	0.6	141.7 mAh g ⁻¹	T1 1	
HNCNFs-700	0.6	(2 A g ⁻¹ , 4000 cycles)	This work	
		132.5 mAh g ⁻¹		
		(4 A g ⁻¹ , 4000 cycles)		
		161.2 mAh g ⁻¹	This work	
HNCNFs-700	0.8	(1 A g ⁻¹ , 4000 cycles)		
		130.4 mAh g ⁻¹		
HNCNFs-700	1.1	$(1 \text{ A g}^{-1}, 4000 \text{ cycles})$	This work	
N-doped soft carbon		165 mAh g ⁻¹		
frameworks	1.0	$(1 \text{ A g}^{-1}, 500 \text{ cycles})$	[3]	
N/O dual-doped		160 mAh g ⁻¹	Ref. [44] of the	
carbon network	0.8	(1 A g ⁻¹ , 4000 cycles)	text	
N-doped carbon		60 mAh g ⁻¹		
nanotubes	1.2	(2 A g ⁻¹ , 1000 cycles)	[4]	
N-doped framework	0.7.1.0	137 mAh g ⁻¹		
carbon	0.7-1.0	(2 A g ⁻¹ , 1000 cycles)	[5]	
	1015	200 mAh g ⁻¹	F (]	
soft Carbon	1.0-1.5	(20 mA g ⁻¹ , 100 cycles)	[6]	
N/S codoped carbon	1.0	180 mAh g ⁻¹	Ref. [1] of the	
microboxes	1.2	(0.5 A g ⁻¹ , 1000 cycles)	text	
porous thin carbon	1012	65 mAh g ⁻¹	[7]	
shells	1.0-1.2	(2 A g ⁻¹ , 900 cycles)	[/]	
	1.0	200 mAh g ⁻¹	[0]	
graphite foam	1.9	(40 mA g ⁻¹ , 200 cycles)	[8]	
carbon nanotubes-		224.4		
interweaved layer on	0.8	234.4 m An g^{+}	[9]	
graphite flakes		$(2 \text{ A g}^{-1}, 1500 \text{ cycles})$		
N/S co-doped porous	1.0	125 mAh g ⁻¹	[10]	
carbon	1.2	(1 A g ⁻¹ , 1000 cycles)		
N-doped porous	0.74	226.1 mAh g ⁻¹	Ref. [30] of the	
carbon	0.64	(1 A g ⁻¹ ,1000 cycles)	text	
N-doped bamboo-like	0.5	204 mAh g ⁻¹		
carbon nanotubes	0.5	(0.5 A g ⁻¹ , 1000 cycles)	[11]	
hollow carbon	0.2	144.3 mAh g ⁻¹	Ref. [11] of the	
nanospheres	0.2	(4 A g ⁻¹ , 2000 cycles)	text	

Table S4. The mass loadings of some carbon-based anodes in PIBs reported in open

 literatures.

graphitic carbon	0810	248 mAh g ⁻¹	Ref. [49] of the	
nanocage	0.8-1.0	(55 mA g ⁻¹ , 100 cycles)	text	
N-doped carbon	0.7	102 mAh g ⁻¹	[12]	
nanotubes	0.7	(2 A g ⁻¹ , 500 cycles)		
few layer N-doped	0 (2 0 75	150 mAh g ⁻¹	[12]	
graphene	0.03-0.75	(0.5 A g ⁻¹ , 500 cycles)	[13]	
high pyridine N-doped	0.9	231 mAh g ⁻¹	Ref. [15] of the	
porous carbon	0.8	(0.5 A g ⁻¹ , 2000 cycles)	text	
amorphous ordered	1.0	146 mAh g ⁻¹	Ref. [4] of the	
mesoporous carbon	1.0	(1 A g ⁻¹ , 1000 cycles)	text	
highly N-doped carbon	1.5	164 mAh g ⁻¹	Ref. [19] of the	
nanofibers	1.5	(1 A g ⁻¹ , 2000 cycles)	text	
N-doped carbon	0.0.1.2	103.4 mAh g ⁻¹	Ref. [41] of the	
nanofibers	0.9-1.5	(0.5 A g ⁻¹ , 1000 cycles)	text	
	2.0	174 mAh g ⁻¹	Ref. [43] of the	
expanded graphite	2.0	(0.2 A g ⁻¹ , 500 cycles)	text	
highly disordered hard	1.0	240 mAh g ⁻¹	F1 47	
carbon	1.0	(0.2 A g ⁻¹ , 150 cycles)	[14]	
2D. CO	0710	137 mAh g ⁻¹	[15]	
3D rGO aerogei	0./-1.0	(2 A g ⁻¹ , 1000 cycles)		
N/O dual-doped hard	0.0	130 mAh g ⁻¹	Ref. [29] of the	
carbon	0.9	(1050 mA g ⁻¹ , 1100 cycles)	text	
hard-soft composite	2.0	200 mAh g ⁻¹	[16]	
carbon	2.0	(0.2 A g ⁻¹ , 200 cycles)		
ultra-high pyridinic N-	1.0	152 mAh ⁻¹	[2]	
doped porous carbon	1.0	(1 A g ⁻¹ , 3000 cycles)		
few-layer F-doped	0.52.0.58	165.9 mAh g ⁻¹	[17]	
graphene foam	0.32-0.38	(0.5 A g ⁻¹ , 200 cycles)	[1/]	

Materials	E (Wh kg ⁻¹)	Reference	
HNCNFs-700//KPBNPs	70.3	This work	
carbon foam//carbon foam	58	[18]	
N-doped carbon nanotubes//laser scribed graphene	65	[4]	
activated carbon//K ₂ TP	101	[19]	
onion-like carbon//activated carbon	142	[20]	
N, P-codoped graphene grown on carbon cloth//KPB	231.5	[21]	
graphenic carbon//K2Ti6O13	58.2	[22]	
activated carbon//Ca _{0.5} Ti ₂ (PO ₄) ₃ @C	80	[23]	
graphite//prussian blue	110 Ref. [55] of text		
soft carbon//commercialized activated carbon	120	[24]	
N-doped porous carbon// PTCDA	153	[2]	

Table S5. Energy density (E) of carbon-based potassium-ion full cells reported inopen literatures.

References

- B. J. Yang, J. T. Chen, L. Y. Liu, P. J. Ma, B. Liu, J. W. Lang, Y. Tang and X. B.
 Yan, *Energy Storage Mater.*, 2019, 23, 522-529.
- 2 Y. H. Xie, Y. Chen, L. Liu, P. Tao, M. P. Fan, N. Xu, X. W. Shen and C. L. Yan, *Adv. Mater.*, 2017, **29**, 1702268.
- 3 C. Liu, N. Xiao, H. J. Li, Q. Dong, Y. W. Wang, H. Q. Li, S. F. Wang, X. Y. Zhang and J. S. Qiu, *Chem. Eng. J.*, 2020, **382**, 121759.
- 4 M. Moussa, S. A. Al-Bataineh, D. Losic and D. P. Dubal, *Appl. Mater. Today*, 2019, **16**, 425-434.
- 5 B. J. Yang, J. T. Chen, L. Y. Liu, P. J. Ma, B. Liu, J. W. Lang, Y. Tang and X. B. Yan, *Energy Storage Mater.*, 2019, **23**, 522-529.
- 6 Z. F. Li, W. Shin, Y. C. Chen, J. C. Neuefeind, P. A. Greaney and X. L. Ji, ACS Appl. Energy Mater., 2019, 2, 4053-4058.
- A. Mahmood, S. Li, Z. Ali, H. Tabassum, B. J. Zhu, Z. B. Liang, W. Meng, W. Aftab, W. H. Guo, H. Zhang, M. Yousaf, S. Gao, R. Q. Zou and Y. Y. Zhao, *Adv. Mater.*, 2019, **31**, 1805430.
- 8 H. H. Wang, G. Yang, Z. Chen, J. L. Liu, X. F. Fan, P. Liang, Y. Z. Huang, J. Y. Lin and Z. X. Shen, *J. Power Sources*, 2019, 419, 82-90.
- 9 S. Jiang, Y. Li, Y. Qian, J. Zhou, T. Q. Li, N. Lin and Y. T. Qian, J. Power Sources, 2019, 436, 226847.
- 10 L. F. Wang, S. J. Li, J. L. Li, S. Yan, X. Y. Zhang, D. H. Wei, Z. Xing, Q. C. Zhuang and Z. C. Ju, *Mater. Today Energy*, 2019, **13**, 195-204.

- Y. Z. Liu, C. H. Yang, Q. C. Pan, Y. P. Li, G. Wang, X. Ou, F. H. Zheng, X. H.
 Xiong, M. L. Liu and Q. Y. Zhang, J. Mater. Chem. A, 2018, 6, 15162-15169.
- 12 P. X. Xiong, X. X. Zhao and Y. H. Xu, ChemSusChem, 2018, 11, 202-208.
- 13 Z. C. Ju, P. Z. Li, G. Y. Ma, Z. Xing, Q. C. Zhuang and Y. T. Qian, *Energy Storage Mater.*, 2018, **11**, 38-46.
- 14 X. D. He, J. Y. Liao, Z. F. Tang, L. N. Xiao, X. Ding, Q. Hu, Z. Y. Wen and C. H. Chen, *J. Power Sources*, 2018, **396**, 533-541.
- 15 L. Y. Liu, Z. F. Lin, J.-Y. Chane-Ching, H. Shao, P.-L. Taberna and P. Simon, *Energy Storage Mater.*, 2019, **19**, 306-313.
- 16 Z. L. Jian, S. Hwang, Z. F. Li, A. S. Hernandez, X. F. Wang, Z. Y. Xing, D. Su and X. L. Ji, *Adv. Funct. Mater.*, 2017, 27, 1700324.
- 17 Z. C. Ju, S. Zhang, Z. Xing, Q. C. Zhuang, Y. H. Qiang and Y. T. Qian, ACS Appl. Mater. Interfaces, 2016, 8, 20682-20690.
- 18 Y. H. Feng, S. H. Chen, J. Wang and B. G. Lu, *J. Energy Chem.*, 2020, 43, 129-138.
- 19 Y. W. Luo, L. J. Liu, K. X. Lei, J. F. Shi, G. Xu, F. J. Li and J. Chen, *Chem. Sci.*, 2019, 10, 2048-2052.
- 20 J. T. Chen, B. J. Yang, H. X. Li, P. J. Ma, J. W. Lang and X. B. Yan, J. Mater. Chem. A, 2019, 7, 9247-9252.
- W. D. Qiu, H. B. Xiao, Y. Li, X. H. Lu and Y. X. Tong, Small, 2019, 15, 1901285.
- 22 S. Y. Dong, Z. F. Li, Z. Y. Xing, X. Y. Wu, X. L. Ji and X. G. Zhang, ACS Appl.

Mater. Interfaces, 2018, 10, 15542-15547.

- Z. Y. Zhang, M. L. Li, Y. Gao, Z. X. Wei, M. N. Zhang, C. Z. Wang, Y. Zeng, B.
 Zou, G. Chen and F. Du, *Adv. Funct. Mater.*, 2018, 28, 1802684.
- 24 L. Fan, K. Lin, J. Wang, R. Ma and B. Lu, Adv. Mater., 2018, 30, 1800804.