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Supplementary Note

Electrochemical performances of HNCNFs-700 in sodium-ion batteries (SIBs)

Electrochemical measurements

The electrochemical Na-storage performances of HNCNFs-700 were also 

investigated using coin-type (CR2025) half-cell configurations vs. Na metal as the 

counter electrode, which were assembled in an Ar-filled glove box ([O2]<1 ppm, 

[H2O]<1 ppm). The separator was Whatman glass fiber (GF/D) and the electrolyte 

was the mixture of ethylene carbonate and diethyl carbonate with a volume ratio of 

1:1, containing 1 M NaClO4 and 5 wt% fluoroethylene carbonate. The working 

electrodes were fabricated by mixing 70 wt% HNCNFs-700, 20 wt% conductive 

agent (Super P) and 10 wt% binder (Na-CMC) using deionized water as the solvent. 

The obtained slurry was pasted uniformly on Cu foil and dried in vacuum at 70 C for 

12 h. Then the electrodes were cut into discoidal pieces with a diameter of 12 mm and 

the mass loading of active materials is 0.4-0.6 mg cm-2. Galvanostatic 

charge/discharge cycling tests were performed using a LAND CT2001A battery 

testing system in the voltage range of 0.01-3 V (vs. Na+/Na). Cyclic voltammetry (CV) 

measurements were carried out on an Ivium-n-Stat electrochemical workstation 

(Ivium Technologies) with a potential scan rate of 0.1 mV s-1 between 0.01-3.0 V (vs. 

Na+/Na).

Electrochemical performances

The electrochemical performances of HNCNFs-700 as an anode in SIBs are 

shown in Fig. S14. CV curves of the HNCNFs-700 electrodes were measured at a 
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scan rate of 0.1 mV s-1 within 0.01-3.0 V (vs. Na+/Na) (see Fig. S14a). The broad 

reduction peak at approximately 0.5 V in the first scan, which disappears at the 

subsequent scans, can be ascribed to the formation of SEI films. The sharp reversible 

cathodic peak close to 0.01 V as well as the wide anodic peak are related to the 

intercalation and deintercalation of Na+ into/from carbon matrix, respectively. During 

the following cycles, two broad peaks around 1.2 V and 0.8 V are attributed to the 

interaction of Na+ into species of N atoms. The CV curves from the second cycle to 

the fifth cycle are well overlapped, which demonstrates an excellent reversibility of 

the HNCNFs-700 electrode. Fig. S14b shows the galvanostatic charge/discharge 

voltage profiles of the HNCNFs-700 electrode for the 1st, 2nd, 50th, 100th and 200th 

cycles at 0.1 A g-1. The initial discharge and charge capacities are 788.6 and 345.4 

mAh g-1, respectively, corresponding to an initial CE of 43.8%. The HNCNFs-700 

electrode delivers a reversible capacity of 308.3 mAh g-1 after 200 cycles with CE 

close to 100% (see Fig. S14c). The HNCNFs-700 electrode also shows superior rate 

performance with reversible capacities of 323.7, 278.6, 245.9, 229.8, 218.2, 209.6, 

188.3 and 169.5 mAh g-1 at 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2 and 5 A g-1, respectively (see 

Fig. S14d). When the current density switches back to 0.1 A g-1, the HNCNFs-700 

electrode recovers a specific capacity of 300.8 mAh g-1 rapidly and then remains 

stable for further cycling. Besides, the HNCNFs-700 electrode maintains a high 

reversible capacity of 223.2 mAh g-1 at 1 A g-1 after 5000 cycles with CE close to 100% 

(see Fig. S14e). This suggests HNCNFs-700 is also an excellent anode material for 

SIBs.
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The Na-storage behavior of the HNCNFs-700 electrode was also analyzed by 

CV measurements at different scan rates from 0.2 to 1 mV s-1 (see Fig. S15a). The 

calculated b values for cathodic and anodic peaks are also both much closer to 1, 

indicating the Na-storage behavior is dominated by surface capacitive effect. The 

pseudocapacitive contributions of the HNCNFs-700 electrode at different scan rates 

are displayed in Fig. S15d.
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Supplementary Figures

Fig. S1 FT-IR spectrum of PANI nanofibers.
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Fig. S2 N2 adsorption/desorption isotherms and the corresponding pore size 

distribution (the inset) of (a) HNCNFs-600 and (b) HNCNFs-800.
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Fig. S3 SEM images of (a) PANI precursor, (b) HNCNFs-600, and (c) HNCNFs-800.
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Fig. S4 TEM images of (a) HNCNFs-600 and (b) HNCNFs-800.
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Fig. S5 (a) XPS survey spectrum of HNCNFs-600. (b), (c) and (d) are high-resolution 

XPS spectra of C 1s, O 1s and N 1s, respectively.
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Fig. S6 (a) XPS survey spectrum of HNCNFs-800. (b), (c) and (d) are high-resolution 

XPS spectra of C 1s, O 1s and N 1s, respectively.
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Fig. S7 CV curves of (a) HNCNFs-600 and (b) HNCNFs-800 electrodes at a scan rate 

of 0.1 mV s-1.
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Fig. S8 Galvanostatic charge/discharge curves of (a) HNCNFs-600 and (b) HNCNFs-

800 electrodes for the 1st, 2nd, 50th, 100th and 200th cycles at a current density of 0.1 A 

g-1.
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Fig. S9 Galvanostatic charge/discharge curves of the HNCNFs-700 electrode at 

various current densities.
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Fig. S10 Rate performance of the super P electrode at various current densities.
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Fig. S11 (a) EIS of HNCNFs-600, HNCNFs-700 and HNCNFs-800 electrodes in 

fresh PIBs, where the inset shows the corresponding equivalent circuit diagram. (b) 

The electrolyte resistance (Rel) and charge transfer resistance (Rct) values of HNCNFs-

600, HNCNFs-700 and HNCNFs-800 electrodes.
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Fig. S12 Cycling performance of the HNCNFs-700 electrode as well as the coulombic 

efficiency at (a) 2 A g-1 for 4000 cycles and (b) 4 A g-1 for 2000 cycles.
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Fig. S13 Cycling performance of the HNCNFs-700 electrode with different mass 

loadings at 1 A g-1 for 4000 cycles.
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Fig. S14 Electrochemical performances of the HNCNFs-700 electrode in SIBs. (a) 

CV curves of the HNCNFs-700 electrode at a scan rate of 0.1 mV s-1. (b) 

Galvanostatic charge/discharge curves of the HNCNFs-700 electrode for the 1st, 2nd, 

50th, 100th and 200th cycles at 0.1 A g-1. (c) Cycling performance of the HNCNFs-700 

electrode as well as the coulombic efficiency at 0.1 A g-1. (d) Rate performance of the 

HNCNFs-700 electrode at various current densities. (e) Long cycling performance of 

the HNCNFs-700 electrode as well as the coulombic efficiency at 1 A g-1.
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Fig. S15 Electrochemical kinetics analysis in SIBs. (a) CV curves of the HNCNFs-

700 electrode at different scan rates from 0.2 to 1 mV s-1. (b) Measurement of b value 

with the relationship between log(i) and log(v). (c) Capacitive and diffusion-

controlled contributions to the charge storage at 0.8 mV s-1. (d) Normalized 

contribution ratios of capacitive and diffusion-controlled capacities of the HNCNFs-

700 electrode at different scan rates.
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Fig. S16 Electrochemical kinetics analysis. (a) CV curves of the HNCNFs-600 

electrode at different scan rates from 0.2 to 1 mV s-1. (b) Measurement of b value with 

the relationship between log(i) and log(v). (c) Capacitive and diffusion-controlled 

contributions to the charge storage at 0.8 mV s-1. (d) Normalized contribution ratios of 

capacitive and diffusion-controlled capacities of the HNCNFs-600 electrode at 

different scan rates.
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Fig. S17 Electrochemical kinetics analysis. (a) CV curves of the HNCNFs-800 

electrode at different scan rates from 0.2 to 1 mV s-1. (b) Measurement of b value with 

the relationship between log(i) and log(v). (c) Capacitive and diffusion-controlled 

contributions to the charge storage at 0.8 mV s-1. (d) Normalized contribution ratios of 

capacitive and diffusion-controlled capacities of the HNCNFs-800 electrode at 

different scan rates.
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Fig. S18 Ex-situ XPS analysis. (a) XPS survey spectra of the HNCNFs-700 electrode 

under the pristine, potassiation and depotassiation states. (b) High-resolution XPS 

spectra of K 2p.
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Fig. S19 Structural characterization and electrochemical performance of KPBNPs in a 

half cell. (a) XRD pattern. (b) CV curves of the KPBNPs electrode at a scan rate of 

0.1 mV s-1. (c) Galvanostatic charge/discharge curves of the KPBNPs electrode for 

the 1st, 2nd, 10th, 50th and 100th cycles at 0.1 A g-1. (d) Cycling performance of the 

KPBNPs cathode as well as the coulombic efficiency at 0.1 A g-1.
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Supplementary Table

Table S1. Structure properties and surface chemistry of three different HNCNFs.

% of total N 1sMaterials d002

(nm)
ID/IG SBET 

(m2 g-1)
C 

(at.%)
N 

(at.%)
O (at. 

%) pyridinic N pyrrolic N graphitic N
HNCNFs-600 0.416 1.67 29.6 84.5 10.3 5.2 31.3 59.8 8.9
HNCNFs-700 0.409 1.59 34.3 85.2 8.2 6.6 38.1 45.7 16.2
HNCNFs-800 0.401 1.42 26.1 88.3 7.4 4.3 31.7 44.9 23.4

Table S2. Electrochemical properties of three different HNCNFs.

Materials Initial 
discharge/charge 

capacity
(mAh g-1)

Initial CE
(%)

Capacity
(mAh g-1)a

Rate 
performance
(mAh g-1)b

Cycling 
performance
(mAh g-1)c

Rct

(Ω)

HNCNFs-600 624.7/312.1 49.9 223.2 121.6 60.5 1850
HNCNFs-700 781.9/410.6 52.5 274.5 139.7 188.4 1320
HNCNFs-800 715.6/374.2 52.3 206.4 70.3 89.5 2050

a Discharge capacities of the HNCNFs electrodes at 0.1 A g-1 after 200 cycles.
b Discharge capacities of the HNCNFs electrodes at 30 A g-1.
c Discharge capacities of the HNCNFs electrodes after 4000 cycles at 1 A g-1.
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Table S3. Comparisons of electrochemical properties of some carbon-based electrode 

materials in PIBs reported in open literatures.

Materials
Initial 

CE
Rate performance Cycling performance Reference

HNCNFs-700 52.5% 239.6 mAh g-1 (2 A g-1) 
211.0 mAh g-1 (5 A g-1)
190.2 mAh g-1 (10 A g-1)
161.7 mAh g-1 (20 A g-1)
139.7 mAh g-1 (30 A g-1)

274.5 mAh g-1 (200 cycles, 0.1 A g-1)
188.4 mAh g-1 (4000 cycles, 1 A g-1)
141.7 mAh g-1 (4000 cycles, 2 A g-1)
132.5 mAh g-1 (2000 cycles, 4 A g-1)

This work

Necklace-like N-
doped hollow carbon 

~30% 224.3 mAh g-1 (1 A g-1)
204.8 mAh g-1 (2 A g-1)

293.5 mAh g-1 (400 cycles, 0.2 A g-1)
161.3 mAh g-1 (1600 cycles, 1 A g-1)

Ref. [18] of 
the text

3D N-doped 
framework carbon

24.3% 168 mAh g-1 (1 A g-1)
146 mAh g-1 (2 A g-1)
115 mAh g-1 (5 A g-1)
111 mAh g-1 (10 A g-1)

137 mAh g-1 (1000 cycles, 2 A g-1) [1]

N/O dual-doped 
carbon network

47.12% 205 mAh g-1 (1 A g-1)
181 mAh g-1 (2 A g-1)
175 mAh g-1 (5 A g-1)

260 mAh g-1 (100 cycles, 0.1 A g-1)
160 mAh g-1 (4000 cycles, 1 A g-1)

Ref. [39] of 
the text

N-doped porous 
carbon

48.9% 185 mAh g-1 (10 A g-1) 384 mAh g-1 (500 cycles, 0.1 A g-1)
226.1 mAh g-1 (1000 cycles, 1 A g-1)
194 mAh g-1 (1000 cycles, 2 A g-1)

160.5 mAh g-1 (1000 cycles, 5 A g-1)

Ref. [30] of 
the text

Highly N-doped 
carbon fibers

49% 153 mAh g-1 (2 A g-1)
126 mAh g-1 (5 A g-1)
104 mAh g-1 (10 A g-1)
101 mAh g-1 (20 A g-1) 

248 mAh g-1 (100 cycles, 0.05 A g-1)
164 mAh g-1 (2000 cycles, 1 A g-1)
146 mAh g-1 (4000 cycles, 2 A g-1)

Ref. [19] of 
the text

N/O dual-doped 
hierarchical porous 

hard carbon

25% 118 mAh g-1 (3 A g-1) 230.6 mAh g-1 (100 cycles, 0.05 A g-1)
130 mAh g-1 (1100 cycles, 1050 mA g-1)

Ref. [29] of 
the text

Amorphous ordered 
mesoporous carbon

63.6% 144 mAh g-1 (1 A g-1) 257.4 mAh g-1 (100 cycles, 0.05 A g-1)
146.5 mAh g-1 (1000 cycles, 1 A g-1)

Ref. [4] of 
the text

Ultra-high pyridinic 
N-doped porous 

carbon

20% 178 mAh g-1 (5 A g-1) 260 mAh g-1 (120 cycles, 0.05 A g-1)
152 mAh g-1 (3000 cycles, 1 A g-1)

[2]

Free-standing porous 
carbon nanofibers 

paper

24.1% 190 mAh g-1 (2 A g-1)
140 mAh g-1 (5 A g-1)

100 mAh g-1 (7.7 A g-1)

270 mAh g-1 (80 cycles, 0.02 A g-1)
211 mAh g-1 (1200 cycles, 0.2 A g-1)

Ref. [13] of 
the text
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Table S4. The mass loadings of some carbon-based anodes in PIBs reported in open 

literatures.

Active materials Mass loading (mg cm-2) Cycling performance Reference

HNCNFs-700 0.6

188.4 mAh g-1

(1 A g-1, 4000 cycles)
141.7 mAh g-1

(2 A g-1, 4000 cycles)
132.5 mAh g-1

(4 A g-1, 4000 cycles)

This work

HNCNFs-700 0.8
161.2 mAh g-1

(1 A g-1, 4000 cycles)
This work

HNCNFs-700 1.1
130.4 mAh g-1

(1 A g-1, 4000 cycles)
This work

N-doped soft carbon 
frameworks

1.0
165 mAh g-1

(1 A g-1, 500 cycles)
[3]

N/O dual-doped 
carbon network

0.8
160 mAh g-1

(1 A g-1, 4000 cycles)
Ref. [44] of the 

text
N-doped carbon 

nanotubes
1.2

60 mAh g-1

(2 A g-1, 1000 cycles)
[4]

N-doped framework 
carbon

0.7-1.0
137 mAh g-1

(2 A g-1, 1000 cycles)
[5]

soft Carbon 1.0-1.5
200 mAh g-1

(20 mA g-1, 100 cycles)
[6]

N/S codoped carbon 
microboxes

1.2
180 mAh g-1

(0.5 A g-1, 1000 cycles)
Ref. [1] of the 

text
porous thin carbon 

shells
1.0-1.2

65 mAh g-1

(2 A g-1, 900 cycles)
[7]

graphite foam 1.9
200 mAh g-1

(40 mA g-1, 200 cycles)
[8]

carbon nanotubes-
interweaved layer on 

graphite flakes
0.8

234.4 m Ah g-1

(2 A g-1, 1500 cycles)
[9]

N/S co-doped porous 
carbon

1.2
125 mAh g-1

(1 A g-1, 1000 cycles)
[10]

N-doped porous 
carbon

0.64
226.1 mAh g-1

(1 A g-1,1000 cycles)
Ref. [30] of the 

text
N-doped bamboo-like 

carbon nanotubes
0.5

204 mAh g-1

(0.5 A g-1, 1000 cycles) 
[11]

hollow carbon 
nanospheres

0.2
144.3 mAh g-1

(4 A g-1, 2000 cycles)
Ref. [11] of the 

text
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graphitic carbon 
nanocage

0.8-1.0
248 mAh g-1

(55 mA g-1, 100 cycles)
Ref. [49] of the 

text
N-doped carbon 

nanotubes
0.7

102 mAh g-1

(2 A g-1, 500 cycles)
[12]

few layer N-doped 
graphene

0.63-0.75
150 mAh g-1

(0.5 A g-1, 500 cycles)
[13]

high pyridine N-doped 
porous carbon

0.8
231 mAh g-1

(0.5 A g-1, 2000 cycles)
Ref. [15] of the 

text
amorphous ordered 
mesoporous carbon

1.0
146 mAh g-1

(1 A g-1, 1000 cycles)
Ref. [4] of the 

text
highly N-doped carbon 

nanofibers
1.5

164 mAh g-1

(1 A g-1, 2000 cycles)
Ref. [19] of the 

text
N-doped carbon 

nanofibers
0.9-1.3

103.4 mAh g-1

(0.5 A g-1, 1000 cycles)
Ref. [41] of the 

text

expanded graphite 2.0
174 mAh g-1

(0.2 A g-1, 500 cycles)
Ref. [43] of the 

text
highly disordered hard 

carbon
1.0

240 mAh g-1

(0.2 A g-1, 150 cycles)
[14]

3D rGO aerogel 0.7-1.0
137 mAh g-1

(2 A g-1, 1000 cycles)
[15]

N/O dual-doped hard 
carbon

0.9
130 mAh g-1

(1050 mA g-1, 1100 cycles)
Ref. [29] of the 

text
hard-soft composite 

carbon
2.0

200 mAh g-1

(0.2 A g-1, 200 cycles)
[16]

ultra-high pyridinic N-
doped porous carbon

1.0
152 mAh-1

(1 A g-1, 3000 cycles)
[2]

few-layer F-doped 
graphene foam

0.52-0.58
165.9 mAh g-1

(0.5 A g-1, 200 cycles)
[17]
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Table S5. Energy density (E) of carbon-based potassium-ion full cells reported in 

open literatures.

Materials E (Wh kg-1) Reference

HNCNFs-700//KPBNPs 70.3 This work

carbon foam//carbon foam 58 [18]

N-doped carbon nanotubes//laser 
scribed graphene

65 [4]

activated carbon//K2TP 101 [19]

onion-like carbon//activated carbon 142 [20]

N, P-codoped graphene grown on 
carbon cloth//KPB

231.5 [21]

graphenic carbon//K2Ti6O13 58.2 [22]

activated carbon//Ca0.5Ti2(PO4)3@C 80 [23]

graphite//prussian blue 110
Ref. [55] of the 

text
soft carbon//commercialized 

activated carbon
120 [24]

N-doped porous carbon//
PTCDA

153 [2]
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