Electronic Supplementary Materials

NiFe₂O₄ nanoparticles: An efficient and reusable catalyst for the selective oxidation of benzyl alcohol to benzaldehyde under mild conditions

Saddam Iraqui, Siddhartha Shankar Kashyap, and Md. Harunar Rashid*

Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112,

Arunachal Pradesh, India

Corresponding author email: harunar.rashid@rgu.ac.in

Characterization of the product

X-ray diffraction (XRD) study of the dried powder samples was carried out on a Bruker D8 Advance powder X-ray diffractometer using Cu $k_α$ radiation with a wavelength of 0.154 nm. For scanning electron microscopic (SEM) study, a small amount of the dry powder samples were spread on a carbon tape posted on an aluminum stub and then sputter-coated with platinum to minimize the charging effect. The micrographs were then recorded in a field emission scanning electron microscope (FESEM) (Carl Zeiss SUPRA 55 FESEM) at an accelerating voltage of 5 kV. For transmission electron microscopic (TEM) studies, a drop of an aqueous suspension of individual powder sample was cast on a carbon-coated copper grid. The excess solutions were soaked with a tissue paper followed by drying in air. The micrographs were then recorded in a high–resolution JEOL electron microscope (JEM 2100EM) at an accelerating voltage of 200 kV. Dried powder of the samples was subjected to magnetic measurements at room temperature using a Physical Property Measurement System (Quantum Design PPMS-VSM). X-ray photoelectron spectroscopy (XPS) analyses of the dried powder samples were performed in Thermo Fisher Scientific, UK makes ESCALB Xi+ X-ray photoelectron spectrometer using Al $k_α$ radiations with an incident energy of 1486.61 eV. The instrument was operated at 15 kV and 300 W at ambient temperature under ultrahigh
vacuum. The charging effect on the sample was corrected by setting the binding energy of the carbon (C-1s) at 284.6 eV and this carbon peak was used as a reference position for scaling all the other peaks. Fourier transforms infrared (FTIR) spectra of the powder samples were collected in a Thermo Scientific Nicolet iS5 spectrophotometer in the range of 4000–400 cm\(^{-1}\). The pellets for recording the FTIR spectra were prepared by mixing the powder sample with dried KBr in the weight ratio of 1:100. \(^1\)H and \(^{13}\)C NMR spectra were recorded in a JNM ECS 400 MHz NMR spectrophotometer (JEOL) using tetramethylsilane (TMS) as the internal standard. Chemical shift values are expressed in ppm. Coupling constants are expressed in Hertz.
Figure S1. EDX spectrum of NiFe$_2$O$_4$ NPs recorded from sample NiFe$_2$O$_4$-4.
Figure S2. Histograms showing the particle size distribution of NiFe$_2$O$_4$ NPs in different samples.
Figure S3. FTIR spectra of benzyl alcohol and its product (benzaldehyde).
Product characterization

Benzaldehyde (Entry 1, Table 3)

![Benzaldehyde](image)

Appearance: Colourless
State: liquid
1H NMR (CDCl$_3$, 400 MHz): δ 10.2 (s, 1H), 7.89-7.87 (d, J=8Hz, 2H), 7.65-7.61 (t, J=8Hz 2H), 7.55-7.51 (t, 2H) ppm

2-Nitro benzaldehyde (Entry 2, Table 3)

![2-Nitro benzaldehyde](image)

Appearance: white
State: Solid; mp=43-46 °C
1H NMR (CDCl$_3$, 500 MHz): δ 10.404 (s, 1H), 8.112-8.095 (t, J=4.5 Hz 1H), 7.944-7.927 (m, 1H), 7.803-7.732 (m, 2H) ppm
13C NMR (CDCl$_3$, 125 MHz): δ 188.125, 149.925, 134.056, 133.677, 131.229, 129.598, 124.462 ppm

4-Nitro benzaldehyde (Entry 4, Table 3)

![4-Nitro benzaldehyde](image)

Appearance: Pale yellow
State: Solid; mp = 104-106 °C
1H NMR (CDCl$_3$, 500 MHz): δ 10.096 (s, 1H), 8.342-8.325 (2, J=4.5 Hz t), 8.027-8.001 (2, m) ppm
13C NMR (CDCl$_3$, 125 MHz): δ 190.375, 151.220, 140.121, 130.573, 124.403 ppm
4-Bromo benzaldehyde (Entry 6, Table 3)

[Chemical Structure Image]

Appearance: White
State: solid; mp=57 °C
1H NMR (CDCl$_3$, 400 MHz): δ 9.97 (s, 1H), 7.75-7.73 (d, J=8 Hz, 2H), 7.69-7.67 (d, J=8 Hz, 2H) ppm
13C NMR (CDCl$_3$, 100 MHz): 191.26, 135.20, 132.67, 131.12, 129.86 ppm

2-Chloro benzaldehyde (Entry 7, Table 3)

[Chemical Structure Image]

Appearance: Yellow coloured
State: Liquid
1H NMR (CDCl$_3$, 400 MHz): δ 9.872 (s, 1H), 7.835-7.818 (m, 1H), 7.55-7.52 (m, 1H), 7.46-7.40 (m, 1H), 7.38-7.36 (d, 1H) ppm.

4-Chloro benzaldehyde (Entry 8, Table 3)

[Chemical Structure Image]

Appearance: Pale yellow
State: Powder; mp=45 °C
1H NMR (CDCl$_3$, 400 MHz): δ 9.93 (s, 1H), 7.78-7.76 (d, J=8 Hz, 2H), 7.47-7.45 (d, J=8 Hz, 2H) ppm
13C NMR (CDCl$_3$, 100 MHz): 190.97, 141.02, 134.85, 131.03, 129.54 ppm

4-Methoxy benzaldehyde (Entry 9, Table 3)

[Chemical Structure Image]

Appearance: Light yellow
State: liquid
1H NMR (CDCl$_3$, 500 MHz): δ 9.87 (s, 1H), 7.835-7.818 (t, J=4.25 Hz, 2H), 7.000-6.983 (t, J=4.25 Hz, 2H), 3.877 (s, 3H) ppm
13C NMR (CDCl$_3$, 125 MHz): δ 191.10, 141.02, 134.85, 131.03, 129.54 ppm
1H and 13C NMR of selected isolated products

1H NMR of benzaldehyde
1H NMR spectrum of 4-methoxy benzaldehyde

13C NMR spectrum of 4-methoxy benzaldehyde
1H NMR spectrum of 2-nitro benzaldehyde

13C NMR spectrum of 2-nitro benzaldehyde
1H NMR spectrum of 4-nitro benzaldehyde

13C NMR spectrum of 4-nitro benzaldehyde
1H NMR spectrum of 2-Chloro benzaldehyde
1H NMR spectrum of 4-Chloro benzaldehyde

13C NMR spectrum of 4-Chloro benzaldehyde
\(^{1}\text{H NMR spectrum of 4-Bromo benzaldehyde}\)

\(^{13}\text{C NMR spectrum of 4-Bromo benzaldehyde}\)