Supporting Information

for

Stabilization of Reduced Copper on Ceria Aerogels for CO Oxidation

Catherine L. Pitman,^a Ashley M. Pennington,^a Todd H. Brintlinger,^b Daniel E. Barlow,^c

Liam F. Esparraguera,^c Rhonda M. Stroud,^b Jeremy J. Pietron,^d Paul A. DeSario,*^c and

Debra R. Rolison*c

^aNRL/NRC Postdoctoral Associate, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States

^bMaterials Science and Technology Division (Code 6300), U.S. Naval Research Laboratory, Washington, D.C. 20375, United States

^cChemistry Division (Code 6100), U.S. Naval Research Laboratory, Washington, D.C. 20375, United States

^dFormer Employee, Surface Chemistry Branch (Code 6170), U.S. Naval Research Laboratory, Washington, D.C. 20375, United States

Contents

I.	Characterization	2
II.	Catalysis	2

I. Characterization

Fig. S1 (left) N_2 adsorption and desorption isotherms of several different batches of CeO₂ aerogel. (right) BJH desorption pore width of several different batches of CeO₂ aerogel

Fig. S2 (left) N_2 adsorption and desorption isotherms of CeO₂ and Cu/CeO₂ materials. (right) BJH desorption pore width of CeO₂ and Cu/CeO₂ materials.

	BET SA (m²/g)	BJH Ads Pore Volume (cm³/g)	BJH Des Pore Volume (cm ³ /g)	BJH Ads Pore Width 4V/A (nm)	BJH Des Pore Width 4V/A (nm)
Sample 1	85.0	0.46	0.46	22.5	21.0
Sample 2	95.0	0.37	0.37	15.8	14.6
Sample 3	89.0	0.41	0.41	18.2	16.6
Sample 4	76.8	0.34	0.34	17.1	15.1
Sample 5	81.5	0.35	0.35	17.0	15.7
Sample 6	59.2	0.24	0.23	15.9	13.1
Sample 7	89.3	0.29	0.30	12.8	12.3
Average	82.2	0.35	0.35	17.0	15.5
St Dev	11.7	0.07	0.08	2.9	2.8
High	95.0	0.46	0.46	22.5	21.0
Low	59.2	0.24	0.23	12.8	12.3

Table S1. Porosimetry Data for Several Batches of CeO₂ aerogels

Fig. S3 Representative X-ray diffractometry of $CeO_2(aero)$ and $CeO_2(partic)$ materials compared to CeO_2 (JCPDS# 01-089-8436). Scherrer analysis of the CeO_2 (111) reflection at $2\theta = 28.55^{\circ}$ with FWHM of 0.86(1)° and 0.38(1)° gives 9.4(9) nm and 21.3(6) nm particles for aerogel and particulate CeO_2 , respectively.

Fig. S4 Bandgap calculation for $CeO_2(aero)$ (yellow) and $CeO_2(partic)$ (blue) showing a smaller band gap for the aerogel sample (2.95 eV) vs the particulate sample (3.08 eV). Both of these band gaps are red-shifted from that of bulk CeO_2 (3.15 eV).

Fig. S5 X-ray diffractogram of a 10Cu/CeO₂(aero) sample compared to the patterns for CuO (JCPDS# 00-044-0706), Cu₂O (JCPDS# 01-073-6237), Cu(JCPDS# 00-001-1241), and CeO₂ (JCPDS# 01-089-8436). Only reflections for CeO₂ and CuO could be identified.

Figure S6. Electron energy–loss spectra illustrating peak overlap of Cu and CeO₂ core-loss as well as data acquired in this work; these spectra show how the various core-loss edges overlap between CeO₂ and Cu. While our data feature very little noise compared to reference data, the ability to distinguish copper L transitions on top of ceria M edges is extremely challenging, if not impossible.

Fig. S7 High-resolution transmission electron micrographs of $5\text{Cu/CeO}_2(\text{aero})$ structures. Panels A–D all show crystalline nanoparticles of ceria, as evidenced by lattice parameters corresponding to ceria <111> and <200> planes, seen in the FFT insets. Attempts to use FFT-filtering to circumvent difficulties associated with HAADF-intensity and/or spectroscopic identification (through energy-dispersive or electron energy-loss spectroscopy) did not prove successful as no lattice planes could be definitively identified as either Cu⁰ or Cu⁺. Ceria nanoparticles of the aerogel are readily identified, however, and consistently show similar morphology and crystallinity.

Fig. S8 Energy-filtered transmission electron microscopy (EF-TEM). (A) HR-TEM of small Cu/CeO₂(aero) structure. (B) EF-TEM with slit at ~50 eV. (C) EF-TEM with slit at 100 eV. Both low-loss and high-loss energy-filtered transmission electron microscopy were performed, but significant amounts of peak overlap in both regions combined with the inherent difficulty of searching for lower-Z copper on higher-Z ceria together with a complex aerogel morphology make definitive identification of copper nanoparticles practically impossible.

Fig. S9 Scanning electron micrographs of 5Cu/CeO₂(aero) at (left) 250 KX and (right) 75 KX magnification.

Fig. S10 Scanning electron micrographs of 2.5Cu/CeO₂(aero) at (left) 250 KX and (right) 75 KX magnification.

Fig. S11 Scanning electron micrographs of Cu/CeO₂(aero) at (left) 250 KX and (right) 75 KX magnification showing the platelet structures formed after Cu photodeposition and their prevalence on the surface.

Fig. S12 Scanning electron micrographs of Cu/CeO₂(partic) at (left) 250 KX and (right) 75 KX magnification showing the bicone structures formed after Cu photodeposition and their prevalence on the surface.

Fig. S13 Energy-dispersive spectroscopy mapping of 5Cu/CeO₂(partic) showing the localization of Cu in the large bicone features.

Fig. S14 (top) Cu LMM of the four most likely Cu states with the peak shapes determined from Biesinger.¹ (middle) 5Cu/CeO₂(partic) Cu LMM and best fit of the data using fitting components. (bottom) 5Cu/CeO₂(aero) Cu LMM and best fit of the data using fitting components. Due to the mixture of oxidation states, peak broadening of insulating materials, and low Cu content, satisfactory fits for quantification of oxidation states could not be obtained.

II. Catalysis

Fig. S16 Thermogravimetric analysis of different catalytic samples. If the entire mass loss is assigned to carbon (which is an overestimate neglecting water loss and any H/O bound to C), the highest weight loss we observed (0.068 mg loss/mg sample) accounts for just under 2 min of CO_2 production (if we assume

Fig. S15 CO conversion as a percentage versus temperature for (A) catalysts with different CeO₂ supports: $5Cu/CeO_2(aero)$ (green), $5Cu/CeO_2(partic)$ (amber), $CeO_2(aero)$ (dashed yellow), and $CeO_2(partic)$ (dashed blue); (B) 5 runs of $5Cu/CeO_2(aero)$ separated by regeneration of the catalyst bed; (C) different weight loadings of Cu on CeO₂(aero): $10Cu/CeO_2(aero)$ (dark green), $5Cu/CeO_2(aero)$ (green), and $2.5Cu/CeO_2(aero)$ (light green); and (D) catalysts with CeO₂ vs TiO₂ supports: $5Cu/CeO_2(aero)$ (green), $5Cu/TeO_2(aero)$ (blue), and $10Cu/TiO_2(aero)$ (black)

100% "CO Conversion"). This amount is dramatically less than the amount of CO consumed, so it is likely not a major component of catalysis.

Fig. S17 CO conversion (left) and CO_2 yield (as a percentage of total CO introduced) for two catalytic runs of CeO_2 (partic).

Fig. S18 CO conversion (left) and CO_2 yield (as a percentage of total CO introduced) for one catalytic run of $CeO_2(aero)$.

Fig. S19 CO conversion (left) and CO₂ yield (as a percentage of total CO introduced) for 5 catalytic runs of 5Cu/CeO₂(aero).

Fig. S20 CO conversion (left) and CO₂ yield (as a percentage of total CO introduced) for 5 catalytic runs of separate batch of 5Cu/CeO₂(aero).

Fig. S21 CO conversion (left) and CO₂ yield (as a percentage of total CO introduced) for 5 catalytic runs of 5Cu/CeO₂partic).

Fig. S22 CO conversion (left) and CO₂ yield (as a percentage of total CO introduced) for 5 catalytic runs of 10Cu/CeO₂(aero).

Fig. S23 CO conversion (left) and CO_2 yield (as a percentage of total CO introduced) for 5 catalytic runs of 2.5Cu/CeO₂(aero).

Fig. S24 CO conversion (left) and CO₂ yield (as a percentage of total CO introduced) for 5 catalytic runs of 5Cu/TiO₂(aero).

Table S2. Sensitivity	y Analysis of Activation	Energy Calculation	from CO	Conversion (kJ/mol)
-----------------------	--------------------------	--------------------	---------	---------------------

	3% Higher	1.5% Higher	As calculated	1.5% Lower	3% Lower
5Cu/CeO ₂ (partic)	38.8	48.8	66.8	114.7	167.4
2.5Cu/CeO ₂ (aero)	63.8	74.3	90.1	119.7	164.1
5Cu/CeO ₂ (aero)	54.0	64.1	79.4	106.2	179.0
10Cu/CeO ₂ (aero)	68.9	78.1	90.5	108.8	140.0

10Cu/CeO ₂ (aero)	48.1	72.9	83.5	130.9	167.2
5Cu/TiO ₂ (aero)	59.7	65.7	73.4	83.6	98.2

Under these flow conditions, the CO stream varies by 3%. To assess the impact of a 3% variation of the CO stream on the low-conversion conditions required for calculating activation energies, a sensitivity analysis was performed. We find that a 3% variation produces such a large range of activation energy values for the calculated values to be essentially meaningless.

¹ M. C. Biesinger Surf. Interface Anal. 2017, 49, 1325–1334 (10.1002/sia.6239)