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Transmission electron microscopy

Figure S1 shows the histograms of particle radius distributions obtained by TEM as well as

the associated means and standard deviations. Figures S2 through S10 show TEM images

for K = 0 through 8.
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Figure S1: Particle radius histograms extracted from the TEM images. The mean and
standard deviation are shown as diamonds and bars. For clarity, the curves are shifted
upwards in steps of 0.4. The dashed line is a guide to the eye. The molar Ag/Au ratios K
are (from bottom to top): 0, 0.4, 0.7, 0.9, 1.2, 1.4, 2, 4, and 8.

Figure S2: TEM image for K = 0.
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Figure S3: TEM image for K = 0.4.

Figure S4: TEM image for K = 0.7.
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Figure S5: TEM image for K = 0.9.

Figure S6: TEM image for K = 1.2.
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Figure S7: TEM image for K = 1.4.

Figure S8: TEM image for K = 2.0.
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Figure S9: TEM image for K = 4.0.

Figure S10: TEM image for K = 8.0.
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SAXS form factor

The scattering signal I of a dilute colloidal solution as a function of the scattering vector q

can be written as:

I(q) =
scale

Vtot

〈
|G|2

〉
θ,ϕ

+ bkg (1)

where scale is a scale factor proportional to the volume fraction of the objects in solution, Vtot

is the total volume of the particle, bkg is a residual background term, G is the (anisotropic)

form factor of the particle (defined below) averaged over the polar and azimuthal angles θ

and ϕ, respectively.

Depending on the shape of the shell (sphere or cube), the composite objects are modeled

as either:

1. gold spheres with radius R, contained within silver spherical shells with outer radius

R + t, see Figure S11a).

2. or gold spheres with radius R, contained within silver cubic shells of side length a, see

Figure S11b).

In both cases we assume that the spheres are centered within the shells, based on the TEM

images.

Sphere in sphere

In this case, we use the PolyCoreShellRatio function available in the NCNR SANS package,S1

implementing a core-shell spherical model with a homothetical polydispersity described by

the Schulz model.
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Figure S11: Diagram of the a) sphere in sphere and b) sphere in cube. c) Scattering
geometry.

Sphere in cube

The form factor in (1) is:

G = c1f1 + c2f2 = (2)

∆ρsm a
3 f1(a, q, θ, ϕ) + ∆ρcs 4πR3 f2(R, q).

On the right-hand side of the equation, we expanded the ci constants in terms of the

particle sizes defined above and the scattering length density (SLD) contrast between shell

(silver) and the surrounding medium (water) ∆ρsm = ρs − ρm and between core (gold) and

shell, ∆ρcs = ρc − ρs. The individual form factors fi depend on the particle dimensions (a

and R) and on the scattering geometry (absolute value q and orientation angles θ and ϕ of

the scattering vector q with respect to the particle reference system, see Figure S11c).

f1(a, q, θ, ϕ) = sinc
(qa

2
sin θ cosϕ

)
sinc

(qa
2

sin θ sinϕ
)

sinc
(qa

2
cos θ

)
(3)

f2(R, q) =
sin(qR)− qR cos(qR)

(qR)3
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The angular integration 〈·〉θ,ϕ =
∫ π
0

sin θ dθ
∫ 2π

0
dϕ · is done using the Integrate2D opera-

tion in Igor Pro 7.0.

Polydispersity

In the sphere-in-cube model, we account for the polydispersity by introducing a homothetical

size distribution: both dimensions are scaled by a parameter λ with respect to their reference

values R0 and a0 (in which case the scattered signal is I0(q), corresponding to λ = 1) and λ

is distributed along a Gaussian:

d(λ) =
1√
2πp

exp

[
−1

2

(
λ− 1

p

)2
]

(4)

Scaling all sizes by λ or the scattering vector q by the same factor preserves the signal, up

to a λ6 prefactor (easily understood if we recall that the scattered intensity is proportional

to the particle volume squared.) The polydisperse signal can then be obtained as:

Iavg(q) =

∫
dλλ6d(λ)I0(λq) (5)

Absorbance spectroscopy model

We model the objects as core-shell spherical objects, with inner radius R1 and outer radius

R2, core volume V1 = (4π/3)R3
1 and total volume V = (4π/3)R3

2. The core volume fraction

f = V1/V . The dielectric constant of the medium (water, in our case) is εm, that of the core

(gold) is ε(λ) and that of the shell (silver) εs(λ). The latter values are taken from S2 and

size-corrected as detailed in S3.

In the Rayleigh (or quasistatic) regime, the polarizability of homogeneous and core-shell

spherical particles is well-known:S4 P (λ) = 3V εmα(λ), with:

αH(λ) =
ε− εm
ε+ 2εm

(6)
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for a homogeneous sphere and

αCS(λ) =
(2εs + ε)(εs − εm) + f(ε− εs)(2εs + εm)

(2εs + ε)(εs + 2εm) + 2f(ε− εs)(εs − εm)
=
α2 − f

α1α2

α3

1 + 2fα1α2

(7)

for a core-shell particle. The wavelength dependence of α(λ) is due to that of ε(λ) and εs(λ).

For simplicity, we do not indicate the argument explicitly in (7). In the second expression

above, the αj are the following homogeneous polarizabilities, defined as in (6): α1 – sphere

with dielectric constant ε in a medium with dielectric constant εs; α2 – εs in εm; α3 – εm in

εs.

For larger particle sizes, the deviation from the Rayleigh regime is accounted for in

the long-wavelength approximation (LWA),S5 as applied to a core-shell object by Chung et

al.,S6,S7 rewritten below in terms of the homogeneous polarizabilities αj:

α(λ) =
α2 − f

α1α2

α3

1 + 2fα1α2(1− δ2/2)
(8)

where xj =
2π

λ

√
εmRj , j = 1, 2, γj = 1−

x2j
10

and δj = x2j +
2

3
ix3j . The corrected homogeneous

polarizabilities αj are now explicitly:

α1 =
γ1(ε− εs)

ε+ 2εm − δ1γ1(ε− εs)

α2 =
γ2(εs − εm)

εs + 2εm − δ2γ2(εs − εm)

α3 =
γ2(εm − εs)

εm + 2εs − δ2γ2(εm − εs)

(9)

The extinction cross-section is calculated as the sum of absorbance and scattering:

Cext(λ) = πR2
2Qext(λ) = πR2

2 [Qabs(λ) +Qsca(λ)] = πR2
2

[
4x2= (α(λ)) +

8

3
x42 |α(λ)|

]
(10)
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BEM simulations
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Figure S12: Extinction cross-section simulated using the BEM (red) and calculated in the
Rayleigh (black dashes) and LWA (blue) approximations for several shell thicknesses t. Note
the logarithmic y scale.

To check the accuracy of (8) we performed BEM simulations, using the MNPBEM

toolbox, for core-shell spherical particles with R1 = 12.4 nm and various shell thicknesses

t = R2−R1. The results are shown in Figure S12. While the Rayleigh approach yields good

results for moderate values of t (below about 2 nm), the LWA model is remarkably close to

the simulation results for all t values in the wavelength range 200 ≤ λ ≤ 450 nm. For clarity,

we do not perform size correction of the dielectric constants, either in the simulations or in

the analytical models.
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Absorbance spectroscopy fitting

The experimentally measured extinction coefficient E(λ) depends on the cross-section (10),

but also on the measurement specifics:S8

E(λ) =
n`

ln 10
Cext(λ) +B (11)

where n is the number concentration of particles (in nm−3), ` is the optical path length

through the solution (in nm) and B is a constant background term. Note that Cext is

expressed in nm2. We use the model (11) to fit the experimental data, as shown in Figure S13.

Note that the shape of the fitting curves (with size correction included) is slightly different

from the model in Figure (S12).
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Figure S13: Experimental extinction values (dots) and fits with the model (11) (red lines).
The molar Ag/Au ratio K increases from bottom to top.

The fit quality is quite good. As the silver quantity increases, the initial plasmon peak

of gold (around 525 nm) flattens and is gradually replaced by a peak around 440 nm char-
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acteristic for silver. At the same time, a dip at 320 nm and a peak at 350 nm become more

and more marked, due to the interband transitions of silver.
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