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Supplementary Information for:

Bias Dependent Variability of Low-Frequency Noise in Single-Layer Graphene FETs

Nikolaos Mavredakis, Ramon Garcia Cortadella, Xavi Illa, Nathan Schaefer, Andrea Bonaccini 
Calia, Anton Guimerà-Brunet, Jose Antonio Garrido and David Jiménez

A. Supplementary Information: Definitions and equations for IV-LFN model

Fig. S1. a) Energy dispersion diagram of GFET (top) and its capacitive circuit (bottom) are 
shown. b) The equivalent circuit for a local current noise contribution to the total noise is 
illustrated. Each noise-generating slice of the channel is connected to two noiseless GFETs, M1 
and M2 respectively. 

Fig. S1a depicts the equivalent capacitive circuit of the CV-IV chemical potential based 

model56-58 where quantum capacitance (Cq) is the derivative of graphene charge Qgr and 

chemical potential Vc(x) corresponds to the voltage drop across Cq at channel position x. A 

linear relationship is considered between Cq and Vc. (Cq=k| Vc |) where k=2e3/(πh2u2f) 56-58 

where uf is the Fermi velocity (=106 m/s), h the reduced Planck constant (=1,05·10-34 J.s).  Vc(x) 

equals to the potential difference between the quasi-Fermi level and the potential at the CNP, 

as illustrated in the energy dispersion relation scheme of graphene in the top drawing of Fig. 

S1a where Vc(0)=Vcs  and Vc(L)=Vcd at the Source (x=0) and Drain (x=L) end, respectively. 

Top and back gate source voltage overdrives are represented as: VGS-VGS0, VBS-VBS0 while top 

and back gate capacitances as: Ctop and Cback. In the GFETs of the present study, only top gate 

voltage is applied and thus Cback is considered negligible. V(x) is the graphene channel quasi-

a)
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Fermi potential at position x, which equals to zero at the Source and VDS at the Drain end 

respectively. Bias dependent term gvc defined in the main manuscript is calculated as56-58:
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while the drain current expression is56-58: 
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Graphene charge is given by56-58: 
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and chemical potential at Source and Drain as56-58: 
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As thoroughly explained in the main manuscript, the integration of local LFN noise sources 

across the channel leads to the calculation of the total LFN PSD and its variance. In order to 

obtain an analytical compact solution based on the recently established chemical potential based 

IV model56-58, a change of integral variable occurs from length x to chemical potential Vc:

                       (S5)gr q
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The fluctuations producing LFN are always slight and as a result, the analysis of the propagation 

of the noise sources to the voltages or currents at the contact terminals reduces to linear analysis. 

Therefore, the principle of superposition can be used for adding the effects of the local noise 

sources along the channel33. These local fluctuations can be modeled by adding a random local 

current noise source δIn with a PSD SδI2
n as shown in the equivalent noise subcircuit53-54 in Fig. 

S1b. The local fluctuations propagate to the terminals resulting in fluctuations of the voltages 

and currents around the DC operating point. 
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B. Supplementary Information: CDF and VGEFF-WLSIDf/ID
2 variance relation for 

W/L=20 μm/20 μm, 50 μm/50 μm GFETs.

 
Fig. S2. Cumulative distribution function (CDF) of natural logarithm of normalized LFN 
Ln(WLSIDf/ID

2), referred to1 Hz, for GFET with a) W/L=20 μm/20 μm and b) W/L=50 μm/50 
μm, shows a log-normal distribution. Markers: extracted CDF, solid lines: theoretical CDF of 
normal distribution of Ln(WLSIDf/ID

2). c) Variability of WLSIDf/ID
2, referred to 1 Hz, is much 

higher and uncorrelated with variability of VGEFF for GFET with c) W/L=20 μm/20 μm and d) 
W/L=50 μm/50 μm.

Fig. S2a and S2b depict the CDF of the natural logarithm of WLSIDf/ID
2 for the 20 μm/20 μm, 

50 μm/50 μm GFETs respectively, at three different VGEFF values clearly indicating the log-

normal distribution of their WLSIDf/ID
2 data. These data variability is also shown vs. VGEFF 

variability in Fig. S2c and S2d for the same devices and it is apparent that these two quantities 

are not correlated which means that WLSIDf/ID
2 variance is mostly related with the mechanisms 

that produce LFN, as proved in the main manuscript.

C. Supplementary Information: Complete LFN variance model including Velocity 

Saturation effect on ΔΝ, Δμ mechanisms 

In ref. 54, the effect of Velocity Saturation (VS) on LFN mean value model and the way it 

reduces ΔΝ and Δμ contributions under high electric fields and short channel dimensions is 

analyzed in detail. In the present section, a similar analysis will be performed regarding VS 

effect on ΔΝ and Δμ LFN variance. The methodology followed is identical to the one used in 

ref. 54 where eqn (2) of the ref. 54 is applied in order to change the integral variable from x to 

Vc instead of eqn (S5) mentioned above. As a result, additional ΔΝ, Δμ VS induced LFN 

variance terms will be added to the long channel terms derived in the main manuscript. More 

particularly, eqns (8-9, 12-13) of the main manuscript regarding ΔΝ, Δμ LFN variance 

a) b)
c)

d)
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contributors, respectively, correspond to the long channel terms named as Var[ΔΝA], Var[ΔμA] 

in this section. Taking into consideration the effective length Leff which accounts for the 

degradation of ID because of VS effect, the following expressions are derived:
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eqns (S6-S7) are analytically solved, they result in eqns (9, 13) of the main manuscript, 

respectively, with the difference of the contribution of Leff which is given by eqns (A10-A11) 

of the Supporting Information of ref. 54. Thus, 1/L term in eqns (8-9, 12-13) of the main 

manuscript is replaced with L2/L3
eff term in eqns (S6-S7), respectively, where in case of a long 

L (Leff≈L), these two terms are equivalent (1/L ≈ L2/L3
eff). Constant terms of eqns (S6-S7) are 

defined as:   and . The contribution of the 2nd term of 
𝐴1𝑉𝑎𝑟 =

16𝑘𝑇𝜆𝑁𝑡𝑐𝑜𝑒𝑓𝑓𝑒4

𝑊𝐶
𝐴2𝑉𝑎𝑟 =

4𝑒2𝛼𝐻

𝑊𝑁𝛼𝐻𝐶𝑘2

eqn (2) of ref. 54 results in Var[ΔΝB], Var[ΔμB] terms of the LFN variance model which are 

fully equivalent to the ΔΝB, ΔμB ones of the LFN mean-value model in ref. 54. In more detail:
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According to eqn (4) of ref. 54, usat=2uf/π=S is constant near CNP for Vc≤Vccrit where Vccrit is a 

critical value of Vc
54 while for Vc≥Vccrit, usat=N/√(V2

c+a/k) is inversely proportional to Vc; where 

N= hΩuf /e and hΩ is phonon energy used as an IV model parameter54-55 which is considerable 

only at high electric field region. Thus, eqns (S8-S9) become: 
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4 22

42 4 42

2 /1

/

cs

D

cdc ccrit

V
c c cI

c
D eff VV V c c

V k V C V a kS L A VarVar WLf dVBI L N V a k k V C





  
    



              (S9a)
 

2

22 4 2

22

/

cs

D

cdc ccrit

V
I c

c
D eff VV V c

S k V CL A VarVar WLf dVBI L S V a k






 
   



              (S9b)
 

2

3/22 4 2

22

/

cs

D

cdc ccrit

V
I c

c
D eff VV V c

S k V CL A VarVar WLf dVBI L N V a k






 
   



which can analytically be solved as:
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Finally we get Var[ΔΝ]= Var[ΔΝA]+Var[ΔΝB], Var[Δμ]= Var[ΔμA]+Var[ΔμB] and 

Var[Total]= Var[ΔΝ]+Var[Δμ] (S12) 

Eqn (S12) is equivalent to eqn (14) of the main manuscript. Despite the fact that in the LFN 

mean value model, the VS related terms ΔΝB, ΔμB are subtracted from ΔΝA, ΔΝB 

respectively54-55, variances are always summed since the variance of the difference of two 

random variables equals to the sum of the variances of these variables. 

The graphical representation of LFN variance contributors derived above (eqns S6-S12) is
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Fig. S3. Variance of normalized LFN Var[WLSδInf/ID

2], referred to1 Hz, vs. top gate voltage 
overdrive VGEFF, for a) ΔN effect and b) Δμ effect for a GFET with W =100 μm at two different 
L and VDS cases; i) L =100 μm, VDS=50 mV (purple) and ii) L =100 nm, VDS=0.3 V (orange). 
Dashed lines represent ΔΝΑ, ΔΝΒ contributors of ΔΝ effect in (a) and ΔμΑ, ΔμΒ contributors of 
Δμ effect in (b) while solid lines the total ΔΝ, Δμ LFN variance mechanisms.

shown in Fig. S3 for both low (L =100 μm, VDS=50 mV) and high electric field (L =100 nm, 

VDS=0.3 V) in order to investigate the contribution of VS related terms (ΔΝΒ, ΔμΒ) to total 

variance. Fig. S3a represents ΔΝ effect and its contributors (ΔΝA, ΔNΒ) while Fig. S3b Δμ effect 

and its contributors (ΔμA, ΔμΒ). It can be concluded that under long channel and low VDS 

conditions which is the case of the measured GFETs at the present work, the effect of VS on 

LFN variance is negligible. The testing of the model at higher drain voltage region for quite 

short channel length (same parameters from Table 1 of the main manuscript and hΩ=18 meV) 

reveals a contribution of VS effect to LFN variance which results in the increase of the later. 

Similar conclusions had been extracted for the effect of VS on LFN mean value model54-55 with 

the difference that in that case VS effect reduced total LFN under high electric fields. 

D. Supplementary Information: Mathematical proof of eqn (6) of the main 

manuscript

In the case of ΔΝ effect, uncorrelated local noise sources inside the integral of eqn (5) of the 

main manuscript can be expressed as f(Ntr)=Λ(x)Ntr where Λ(x)=(eCq(x))2[LQgr(x) (Cq(x)+C)]-

2W-1 with Qgr, Cq functions of x. If eqn (3) of the main manuscript is considered, eqn (6) of the 

main manuscript can be analyzed as:

a) b)
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Variance can get into the sum since local noise sources are considered independent while 

squared integral variable leads to a double integral notation. Since Λ2(x) is function only of one 

variable (x), the double integral turns into a single integral multiplied with L*. Eqn (S13) proves 

the validity of eqn (6) of the main manuscript. The same procedure can be applied for Δμ effect.

E. Supplementary Information: ~(gm/ID)4 LFN Variance Model

In Fig. 5a of the main manuscript, a simple ~(gm/ID)4 WLSIDf/ID
2 variance model is shown which 

is valid only away the CNP where channel is uniform. It is based on a very common 

approximation for ΔΝ LFN mean value modeling which predicts a ~(gm/ID)2 dependence26, 29, 

31. The way this variance model is derived is shown in analytical steps in the present section. 

According to eqn (A23) in the Supporting Information of ref. 53, current fluctuation ΔID equals 

to:
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Since the channel is considered uniform in this approach, no quantity remains inside the 

integral53 and thus, there is no point of calculating the local variance. If total variance of eqn 

(S15) is calculated:

                    (S16)
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F. Supplementary Information: Analysis of LFN variance locally in the channel

 
Fig. S4. Local variance of normalized LFN Var[WLSδInf/ID

2], referred to1 Hz, vs. channel 
position x, for GFETs with a) W/L=20 μm/20 μm, b) 50 μm/50 μm and c) 100 μm/100 μm. ΔΝ, 
Δμ contributions are shown at three different VGEFF values away, close and at the CNP (VGEFF=-
0.1, -0.04 and 0 V).

In Fig. S4, the local LFN variance is illustrated vs. channel position x for all the GFETs under 

study; a) W/L=20 μm /20 μm, b) 50 μm/50 μm and c) 100 μm/100 μm. Both LFN mechanisms 

(ΔΝ–inside the integral of eqn (8) in the main manuscript, Δμ–inside the integral of eqn (12) in 

the main manuscript) are depicted far from, close to and at the CNP in the p-type region. What 

can be noticed is that ΔΝ local LFN variance near the CNP is mainly determined by the Source 

and Drain areas while at the middle of the channel where the CNP occurs under low VDS, it 

presents a deep minimum and becomes trivial. Away from the CNP it is constant along the 

channel due to its homogeneity. Regarding Δμ local LFN variance, it remains continual both 

near and away the CNP. The above dependencies of LFN local variances resemble the LFN 

local mean values53. In more detail, the dip observed at the CNP for the ΔΝ local LFN variance 

a) b) c)
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is probably caused by the residual charge ρ0 as the latter is known to cause a similar shape for 

the ΔΝ local LFN mean value53. Both Δμ local LFN variance and mean value are not very 

sensitive to the residual charge.

G. Supplementary Information: Extraction of Ntr, αH, Ntcoeff and NαH parameters

The Ntcoeff, NαH statistical LFN models parameters are extracted from LFN variance data in Fig. 

5 of the main manuscript. Regarding Ntcoeff, it is much greater than unity for all GFETs which 

means that the Poisson distribution that is the case for trap statistics in silicon-oxide transistors, 

is not valid in this study probably because of a different nature of traps due to electrolyte-

graphene interface43, 60-63. To investigate deeper the latter, LFN mean value model parameters 

(NT, αH) are extracted for every available measured sample for each one of the three GFETs of 

this work; Ntr can be easily calculated from NT. Fig. S5 presents the WLSIDf/ID
2 LFN mean value 

data from 5 random samples for a) W/L= 20 μm/20 μm, b) 50 μm/50 μm and c) 100 μm/100 μm 

GFETs vs. VGEFF. Measurements are shown with markers while the models are also derived for 

every sample and shown with solid lines. The values of the extratced Ntr, αH parameters for 

every sample are shown in Table S1 while their variance and ln-mean value are also estimated. 

As it was indicated in the main manuscript, Ntcoeff=Var[Ntr]/E[Ntr] and NαH=E[αH](Var[αH]WL)-

1, thus the LFN variance model parameters can be derived. Astonishingly, these calculated 

parameters are exact dublicates of the values in Table 1 of the main manuscript which were 

extracted from LFN variance data of Fig. 5 of the main manuscript and resulted in the 

remarkable accuracy of the model.  

 
Fig. S5. Normalized LFN WLSIDf/ID

2, referred to1 Hz, vs. top gate voltage overdrive VGEFF, for 

a)

b) c)
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GFETs with a) W/L=20 μm/20 μm, b) 50 μm/50 μm and c) 100 μm/100 μm. Measured noise 
from 5 different samples: open circle markers, model for 5 different samples: lines. (sample 1: 
red, sample 2: blue, sample 3: green, sample 4: purple, sample 5: grey).

TABLE S1
W/L=20 μm/20 μm W/L=50 μm/50 μm W/L=100 μm/100 μm

Ntr=WLKTλNT αH Ntr=WLKTλNT αH Ntr=WLKTλNT αH

1 2.925416.104 7.15.10-4 3.270822.105 0.833.10-3 5.0411456.106 1.75.10-2

2 1.331897.104 10.4.10-4 2.559351.105 1.943.10-3 2.3266826.106 0.9375.10-2

3 3.329741.104 2.28.10-4 3.981212.105 1.665.10-3 12.408974.106 0.75.10-2

4 1.902709.104 12.35.10-4 2.274979.105 1.388.10-3 3.8778043.106 1. .10-2

5 1.427032.104 6.83.10-4 1.564048.105 1.11.10-3 2.5205728.106 0.08125.10-2

6 2.378387.104 1.76.10-4 1.706234.105 1.203.10-3 3.6839141.106 0.0875.10-2

7 2.021629.104 4.23.10-4 1.990606.105 1.018.10-3 0.38778043.106 2.6875.10-2

8 2.021629.104 5.2.10-4 1.990606.105 0.925.10-3 2.3266826.106 2.125.10-2

9 2.140548.104 6.5.10-4 8.531169.105 0.74.10-3 3.4900239.106 1. .10-2

10 1.189193.104 7.8.10-4 2.274979.105 0.833.10-3 4.2655847.106 0.8125.10-2

11 1.545951.104 10.08.10-4 4.265585.105 1.48.10-3 3.1022434.106 0.875.10-2

12 1.902709.104 6.5.10-4 1.706234.105 0.74.10-3 3.8778043.106 1.5.10-2

13 3.448661.104 2.28.10-4 1.137489.105 1.295.10-3 11.245633.106 1.5.10-2

14 3.091903.104 4.23.10-4 1.421862.105 0.814.10-3 4.6533652.106 1.875.10-2

15 3.56758.104 1.95.10-4 2.417165.105 2.035.10-3 4.6533652.106 1.875.10-2

16 3.329741.104 4.88.10-4 6.256191.105 2.59.10-3 10.470072.106 0.875.10-2

17 2.616225.104 6.83.10-4 7.109308.105 2.775.10-3 4.6533652.106 1.25.10-2

18 2.735145.104 8.13.10-4 3.412468.105 3.885.10-3 2.3266826.106 0.75.10-2

19 1.664871.104 7.48.10-4 2.843723.105 1.48.10-3 10.082291.106 0.75.10-2

20 3.329741.104 14.3.10-4 12.19957.105 6.475.10-3 13.572315.106 1.5.10-2

21 6.256191.105 2.22.10-3 3.1022434.106 0.625.10-2

22 6.540563.105 1.85.10-3 9.6945108.106 1.375.10-2

23 9.6945108.106 1.375.10-2

24 9.6945108.106 1.5625.10-2

25 7.7556086.106 0.75.10-2

26 2.3266826.106 2.5.10-2

27 1.1633413.106 1.0625.10-2

28 1.1633413.106 8.125.10-2

29 3.88.106 0.813.10-2

30 1.1633413.106 1.125.10-2

31 3.8778043.106 0.75.10-2

32 2.714463.106 0.9375.10-2

33 6.9800478.106 1.0625.10-2

34 6.5922673.106 0.625.10-2

35 5.428926.106 0.875.10-2

36 3.4900239.106 0.6875.10-2

37 2.3266826.106 0.6875.10-2

38 4.2655847.106 1.10-2

39 0.77556086.106 0.9375.10-2

40 1.5511217.106 1.10-2

41 12.021193.106 1.75.10-2

42 4.2655847.106 0.9375.10-2

43 3.4900239.106 0.5625.10-2

44 9.6945108.106 2.8.10-2

45 13.572315.106 1.5.10-2

46 12.796754.106 1.75.10-2

47 10.082291.106 1.875.10-2

Variance Var[Ntr] Var[αH] Var[Ntr] Var[αH] Var[Ntr] Var[αH]
6.1271838.107 1.17.10-7 7.91.1010 1.71.10-6 1.519.1013 3.1.10-5

Mean E[Ntr] E[αH] E[Ntr] E[αH] E[Ntr] E[αH]
2.267256.104 5.62.10-4 3.155481.105 1.5.10-3 4.4603989.106 1.1145.10-2

Ntcoeff=Var[Ntr]/
E[Ntr]

NαH=E[αH]/ 
(Var[αH]WL)

Ntcoeff=Var[Ntr]/
E[Ntr]

NαH=E[αH]/ 
(Var[αH]WL)

Ntcoeff=Var[Ntr]/
E[Ntr]

NαH=E[αH]/ 
(Var[αH]WL)

2.702466.103 1.19.1013 2.505385.105 3.5.1011 3.4046362.106 3.6.1010

 


