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S1. Hyperparameter Optimization
When applying image processing with the deep CNN learning, a large amount of 
intermediate information extracted from the features require optimization. The 
optimization process was applied to three main hyperparameters: hypercolumn density and 
channel, K-means size, and boosting parameters. 

We first optimized two hyperparameters associated with the hypercolumn settings: density 
and channel. The hypercolumn density is defined as how many pixels are taken into 
account when multiple intermediate images through vgg16 architecture are extracted and 
summarized to create a standard size hypercolumn. In our model, each image at different 
levels of Conv block has different shapes (224, 112, 56, 28, and 14 pixels, respectively). A 
fully-considered or 100% density hypercolumn contains all channels in-depth, and fully-
normalized size of pixels in width and length, represented by a total of 50,176 pixels. The 
density can be set as10% (5,000 times 1,472 channels), 20% (10,000 times 1,472 channels), 
etc., where 5 Conv block layers are included in the 1,472 channels. The results showed that 
optimization for the hypercolumn density had little impact on classification performance 
in the range from 5% to 60%, while the typical settings were selected as10% and 20%.

Hypercolumn channel, another important hyperparameter, is defined as the depth of the 
hypercolumn. The total number of channels is 1,472 including the depth of convolutional 
layers 2, 4, 6, 9, and 12 (see Fig. 6 in the main content). We attempted to utilize 5 blocks 
to count features from shallow to deep. Each extracted image feature was then standardized 
to a certain shape and counted to obtain the number of channels. Even extraction from 5 
Conv blocks was a balanced strategy to combine deep filtered information output from the 
bottom LinearSoftmax layer of the VGG16 architecture, and shallow features processed 
through the Conv matrices. Future efforts will be made to consider a different combination 
of extracted layers to fit image datasets from a wide range of interests.

Fig. S1 Comparison of model classification accuracy (%) under different boosting 
classifiers.



Fig. S2 Comparison of model training time (Hrs) under different boosting classifiers, test 
workstation configuration: GeForce RTX 2070 8GB + Intel Core i7-8700k.

Different K-means dictionary designs are often used to describe features or vectors in the 
image. K-means size is referred to the number of intersections of a grid or mesh to describe 
local image features as a vector of semantics, where then these semantics can be encoded 
into analyzable residuals. The larger the K size is, the more precise feature residuals can 
be summarized from the hypercolumn by VLAD encoding. However, the size of K-means 
is limited by training-testing mode of CNN model, when the overfitting of certain classes 
may lead to a lack of generalization ability to new images and results in bottleneck or limit 
value on performance. It was also noticed that storage memory of computational sources 
can be limited since these trained feature residuals need to be stored on RAM as a semantic 
dictionary. Therefore, the selection of K-means is mostly based on practical experiments 
by tuning on hyperparameters to reach global optimization. Three types of boosting 
algorithms including Ada Boost, Random Forest, and Gradient Boosting were tested. The 
effects of the K-means size and different boosting classifier conditions were evaluated by 
the classification performance (see Fig. S1) and computation expense (see Fig. S2). As 
seen in Fig. S1, Gradient Boosting achieved better accuracy in the range of 89–92% than 
the performance values of Random Forest and Ada Boost, both of which were below the 
baseline value (88%) obtained by applying LinearSoftmax classifier. When applying 
different K-means sizes to the same boosting classifier, it showed little impact on the 
overall classification accuracy. When it comes to the comparison of the computational cost 
of using different boosting classifiers, Fig. S2 showed that the training time for the Gradient 
Boosting classifier increased drastically as the size of the K-means dictionary increased 
whereas other two classifiers were less dependent upon the K-means size. Considering the 
overall classification accuracy and computational cost associated with the selected 
classifiers and K-means sizes, we chose Gradient Boosting to build our classifier under the 
hypercolumn model in the normal K-means size condition (5-100) to achieve the desired 
accuracy within reasonable computational time. 



S2. Particle classification performance
Table S1. Average 5-fold cross-validation classification accuracy (%) for the 4-class and 
8-class datasets. The effects of the models (linear-softmax vs. hypercolumn) and the 
datasets (original vs. augmented) were evaluated. 

Model Dataset Processing Cl Fi Ma MS GS SP HDP PR
Total 

(std.)

Linear-SoftMax 4-class Original 67.7 69.2 86.5 83.2 – – – – 80.3 (4.79)

Linear-SoftMax 4-class Augmented 88.4 93.7 84.9 84.9 – – – – 88.0 (2.08)

10% Hcol 4-class Original 65.2 72.6 91.1 88.2 – – – – 82.9 (6.21)

10% Hcol 4-class Augmented 90.5 91.5 92.4 89.1 – – – – 90.9 (0.71)

Linear-SoftMax 8-class Original 64.0 71.5 86.6 74.8 60.0 70.0 52.7 52.6 74.3 (5.80)

Linear-SoftMax 8-class Augmented 80.4 84.7 77.4 79.1 72.5 89.2 81.7 76.7 80.2 (2.56)

10% Hcol 8-class Original 67.0 58.0 88.8 87.6 70.0 56.5 51.3 70.7 78.5 (6.91)

10% Hcol 8-class Augmented 77.9 87.8 87.0 88.3 83.8 90.3 89.7 71.0 84.5 (3.37)

S3. Confusion Matrix Analysis
A confusion matrix was introduced to evaluate the classification performance, with its 
vertical axis representing the ground truth labels and horizontal axis as the predicted labels. 
It illustrates the classification accuracy for each individually labeled class on the diagonal 
direction and false negative or false positive rates on other lattices. 

As shown in Fig. 11 in the main content, the classification error for a class (for example 
Ma) is primarily attributed to a particular class (MS) rather than other evenly distributed 
misclassified labels. The reason for this biased error is rooted within the sample image 
dataset, where some labeled images in certain classes pertain highly similar features (See 
Figure S3), leading to higher classification errors than other classes (e.g.,  9% of  MS being 
predicted as Ma and 6% of Ma vice versa as seen in Fig. 11(a)).

Fig. S3. Comparison of similar sample images from different classes: (a-b) Matrices 
(Ma), (c-d) Matrix-surfaces (MS).

To improve the misclassification of particular classes with high similarity, two prospective 
approaches are suggested: (1) optimize the existing classifier, and (2) reconstruct a new 
classification workflow with multi-level architecture. Instead of applying linear 
distribution on final output for processed features, one approach is to implement a non-



linear or bias-weighted output layer as a classifier, with enhanced capabilities to identify 
classes with high similarities. Also, combing multiple classifiers can be applied as an 
alternative approach to achieve improved accuracy on classification tasks. Applying a 
multi-level classification workflow is another workable approach to improve the 
classification specifically for similar classes. Taken 4-class dataset as an instance, instead 
of using Clusters, Fibers, Matrices, and Matrix-Surfaces as four initial labels for output, 
similar classes can be grouped into the large classes (such as Fi grouped with Cl, and Ma 
coupled with MS) followed by the classification of the individual classes themselves, 
which separates the overall hard classification tasks into multiple easy tasks. 


