
Electronic Supplementary Information

A Transfer Learning Approach for Improved Classification of
Carbon Nanomaterials from TEM Images

Qixiang Luo1, Elizabeth A. Holm2, Chen Wang3*

1Department of Material Science and Engineering, Pennsylvania State University, University
Park, PA 16802, United States
2Department of Material Science and Engineering, Carnegie Mellon University, Pittsburgh, PA
15213, United States
3Health Effects Lab Division, National Institute for Occupational Safety and Health, Centers for
Disease Control and Prevention, Cincinnati, OH 45226, United States

*Author to whom correspondence should be addressed (xli7@cdc.gov)

Disclaimer—The findings and conclusions in this report are those of the authors and do not necessarily
represent the views of the National Institute for Occupational Safety and Health. Mention of product or
company name does not constitute endorsement by the Centers for Disease Control and Prevention.

Electronic Supplementary Material (ESI) for Nanoscale Advances.
This journal is © The Royal Society of Chemistry 2020

mailto:xli7@cdc.gov

S1. Hyperparameter Optimization
When applying image processing with the deep CNN learning, a large amount of
intermediate information extracted from the features require optimization. The
optimization process was applied to three main hyperparameters: hypercolumn density and
channel, K-means size, and boosting parameters.

We first optimized two hyperparameters associated with the hypercolumn settings: density
and channel. The hypercolumn density is defined as how many pixels are taken into
account when multiple intermediate images through vgg16 architecture are extracted and
summarized to create a standard size hypercolumn. In our model, each image at different
levels of Conv block has different shapes (224, 112, 56, 28, and 14 pixels, respectively). A
fully-considered or 100% density hypercolumn contains all channels in-depth, and fully-
normalized size of pixels in width and length, represented by a total of 50,176 pixels. The
density can be set as10% (5,000 times 1,472 channels), 20% (10,000 times 1,472 channels),
etc., where 5 Conv block layers are included in the 1,472 channels. The results showed that
optimization for the hypercolumn density had little impact on classification performance
in the range from 5% to 60%, while the typical settings were selected as10% and 20%.

Hypercolumn channel, another important hyperparameter, is defined as the depth of the
hypercolumn. The total number of channels is 1,472 including the depth of convolutional
layers 2, 4, 6, 9, and 12 (see Fig. 6 in the main content). We attempted to utilize 5 blocks
to count features from shallow to deep. Each extracted image feature was then standardized
to a certain shape and counted to obtain the number of channels. Even extraction from 5
Conv blocks was a balanced strategy to combine deep filtered information output from the
bottom LinearSoftmax layer of the VGG16 architecture, and shallow features processed
through the Conv matrices. Future efforts will be made to consider a different combination
of extracted layers to fit image datasets from a wide range of interests.

Fig. S1 Comparison of model classification accuracy (%) under different boosting
classifiers.

Fig. S2 Comparison of model training time (Hrs) under different boosting classifiers, test
workstation configuration: GeForce RTX 2070 8GB + Intel Core i7-8700k.

Different K-means dictionary designs are often used to describe features or vectors in the
image. K-means size is referred to the number of intersections of a grid or mesh to describe
local image features as a vector of semantics, where then these semantics can be encoded
into analyzable residuals. The larger the K size is, the more precise feature residuals can
be summarized from the hypercolumn by VLAD encoding. However, the size of K-means
is limited by training-testing mode of CNN model, when the overfitting of certain classes
may lead to a lack of generalization ability to new images and results in bottleneck or limit
value on performance. It was also noticed that storage memory of computational sources
can be limited since these trained feature residuals need to be stored on RAM as a semantic
dictionary. Therefore, the selection of K-means is mostly based on practical experiments
by tuning on hyperparameters to reach global optimization. Three types of boosting
algorithms including Ada Boost, Random Forest, and Gradient Boosting were tested. The
effects of the K-means size and different boosting classifier conditions were evaluated by
the classification performance (see Fig. S1) and computation expense (see Fig. S2). As
seen in Fig. S1, Gradient Boosting achieved better accuracy in the range of 89–92% than
the performance values of Random Forest and Ada Boost, both of which were below the
baseline value (88%) obtained by applying LinearSoftmax classifier. When applying
different K-means sizes to the same boosting classifier, it showed little impact on the
overall classification accuracy. When it comes to the comparison of the computational cost
of using different boosting classifiers, Fig. S2 showed that the training time for the Gradient
Boosting classifier increased drastically as the size of the K-means dictionary increased
whereas other two classifiers were less dependent upon the K-means size. Considering the
overall classification accuracy and computational cost associated with the selected
classifiers and K-means sizes, we chose Gradient Boosting to build our classifier under the
hypercolumn model in the normal K-means size condition (5-100) to achieve the desired
accuracy within reasonable computational time.

S2. Particle classification performance
Table S1. Average 5-fold cross-validation classification accuracy (%) for the 4-class and
8-class datasets. The effects of the models (linear-softmax vs. hypercolumn) and the
datasets (original vs. augmented) were evaluated.

Model Dataset Processing Cl Fi Ma MS GS SP HDP PR
Total

(std.)

Linear-SoftMax 4-class Original 67.7 69.2 86.5 83.2 – – – – 80.3 (4.79)

Linear-SoftMax 4-class Augmented 88.4 93.7 84.9 84.9 – – – – 88.0 (2.08)

10% Hcol 4-class Original 65.2 72.6 91.1 88.2 – – – – 82.9 (6.21)

10% Hcol 4-class Augmented 90.5 91.5 92.4 89.1 – – – – 90.9 (0.71)

Linear-SoftMax 8-class Original 64.0 71.5 86.6 74.8 60.0 70.0 52.7 52.6 74.3 (5.80)

Linear-SoftMax 8-class Augmented 80.4 84.7 77.4 79.1 72.5 89.2 81.7 76.7 80.2 (2.56)

10% Hcol 8-class Original 67.0 58.0 88.8 87.6 70.0 56.5 51.3 70.7 78.5 (6.91)

10% Hcol 8-class Augmented 77.9 87.8 87.0 88.3 83.8 90.3 89.7 71.0 84.5 (3.37)

S3. Confusion Matrix Analysis
A confusion matrix was introduced to evaluate the classification performance, with its
vertical axis representing the ground truth labels and horizontal axis as the predicted labels.
It illustrates the classification accuracy for each individually labeled class on the diagonal
direction and false negative or false positive rates on other lattices.

As shown in Fig. 11 in the main content, the classification error for a class (for example
Ma) is primarily attributed to a particular class (MS) rather than other evenly distributed
misclassified labels. The reason for this biased error is rooted within the sample image
dataset, where some labeled images in certain classes pertain highly similar features (See
Figure S3), leading to higher classification errors than other classes (e.g., 9% of MS being
predicted as Ma and 6% of Ma vice versa as seen in Fig. 11(a)).

Fig. S3. Comparison of similar sample images from different classes: (a-b) Matrices
(Ma), (c-d) Matrix-surfaces (MS).

To improve the misclassification of particular classes with high similarity, two prospective
approaches are suggested: (1) optimize the existing classifier, and (2) reconstruct a new
classification workflow with multi-level architecture. Instead of applying linear
distribution on final output for processed features, one approach is to implement a non-

linear or bias-weighted output layer as a classifier, with enhanced capabilities to identify
classes with high similarities. Also, combing multiple classifiers can be applied as an
alternative approach to achieve improved accuracy on classification tasks. Applying a
multi-level classification workflow is another workable approach to improve the
classification specifically for similar classes. Taken 4-class dataset as an instance, instead
of using Clusters, Fibers, Matrices, and Matrix-Surfaces as four initial labels for output,
similar classes can be grouped into the large classes (such as Fi grouped with Cl, and Ma
coupled with MS) followed by the classification of the individual classes themselves,
which separates the overall hard classification tasks into multiple easy tasks.

