Supporting Information

Scheme S1. The sequential deposition of TiO₂/BiNP/Sb₂S₃ photoanode.

Figure S1. (a-c) FESEM images of BiNPs and TiO_2/Sb_2S_3 and $TiO_2/BiNP$ electrodes. (d) EDAX of $TiO_2/BiNP$ electrode.

Figure S2. (a) TEM image, (b) HRTEM image, (c) XRD pattern and (d) Raman spectra of BiNPs.

Figure S3. Raman spectra of TiO₂, TiO₂/BiNP and TiO₂/BiNP/Sb₂S₃ samples.

Figure S4. Raman spectra of Sb_2S_3 sample, where 148 cm⁻¹ and 294 cm⁻¹ bands are associated with Sb-Sb and Sb-S bonding, respectively.

Figure S5. (a) Absorption spectra of BiNP and (b) Sb₂S₃ NP samples.

Solar to hydrogen conversion efficiency:

The solar to hydrogen (STH) conversion efficiencies (η) of the photoelectrodes were calculated using the following equation:

$$\eta = J (1.23 - V) / P_{light}$$
 (1)

where, P_{light} , J and V are the illumination intensity (100 mW cm⁻²), photocurrent density at the measured bias and applied potential versus RHE, respectively.

Figure S6. (a) LSV plots and (b) STH efficiency of the TiO₂/Sb₂S₃/BiNP photoelectrode.

Figure S7. Bode plots of pristine TiO₂, TiO₂/BiNP, TiO₂/Sb₂S₃ and TiO₂/BiNP/Sb₂S₃ electrode.

Table 1. Solar cell parameters of cells with 0.1 M Na₂S electrolyte, with active electrode area of 0.12 to 0.15 cm² under 1 sun illumination (100 mW cm⁻²) with C-fabric as the counter electrode.

Photoanode configuration	V _{oc} (V)	J _{sc} (mA/cm²)	FF(%)	η(%)
(1) TiO ₂	0.42	0.15	65	0.019
(2) TiO ₂ /BiNP	0.54	0.56	66	0.39
$(3)TiO_2/Sb_2S_3$	0.81	8.41	44	2.99
(4) $TiO_2/BiNP/Sb_2S_3$	0.86	9.54	47	3.85

Table 2. Impedance data after fitting plots of the pristine TiO_2 , $TiO_2/BiNP$, TiO_2/Sb_2S_3 and $TiO_2/BiNP/Sb_2S_3$ composite photoanodes.

Sample	$R_{S}(\Omega)$	$R_{CT}(\Omega)$	CPE
			(µ22)
(1) TiO ₂	8.1	775	12.4
(2) TiO ₂ /BiNPs	7.6	215	18.6
$(3) \operatorname{TiO}_2/\operatorname{Sb}_2 \operatorname{S}_3$	5.3	146	24.3
(4) $TiO_2/BiNP/Sb_2S_3$	3.9	71	26.1

Cyclic voltammograms (CV):

CV of pristine TiO_2 , BiNPs and Sb_2S_3 films are shown in Fig. S6 and the position of the CB and VB energy levels were calculated from the oxidation and reduction potential. CV plots of TiO_2 , BiNPs and Sb_2S_3 films (as working electrodes), were recorded in an aqueous KOH solution, Pt and Ag/AgCl/KCl as the counter electrode and reference electrode, respectively.

For TiO₂ the conduction band (CB) and the valance band (VB) positions were calculated by using the following method.

$$E_{red} = -0.96 V versus Ag/AgCl/KCl$$

Electrode potential of reference electrode = +0.197 V

E_{red} versus NHE (normal hydrogen electrode)

$$E_{red} = -0.96 \text{ V} + 0.197 \text{ V} = -0.763 \text{ V} \text{ (NHE)}$$

We converted V (volts) into eV (electron volts),

Therefore, $E_{red} = -4.5 \text{ eV} (0 \text{ V vs NHE}) - (-0.76 \text{ V}) = -3.74 \text{ eV} (CB)$

This value is equal to the CB position of $g-C_3N_4$. Then the VB position of TiO_2 was obtained by the addition of the optical bandgap energy value to the CB energy.

 $E_{red} = -3.74 \text{ eV} + (-3.13 \text{ eV}) = -6.87 \text{ eV}$ (VB)

For Sb₂S₃:

$$E_{vb} = -1.12 \text{ V vs Ag/AgCl/KCl}$$

$$E_{NHE} = -1.12 \text{ V} + 0.197 \text{ V} = -0.923 \text{ V}$$

$$E_{F} = -4.5 \text{ eV} - (-0.92 \text{ V}) = -3.58 \text{ eV} \text{ (CB)}$$

$$E_{red} = -3.58 \text{ eV} + (-1.71 \text{ eV}) = -5.29 \text{ eV} \text{ (VB)}$$

For BiNPs:

$$E_{vb} = -0.44 \text{ V vs Ag/AgCl/KCl}$$
$$E_{NHE} = -0.44 \text{ V} + 0.197 \text{ V} = -0.24 \text{ V}$$
$$E_{F} = -4.5 \text{ eV} - (-0.24 \text{ V}) = -4.25 \text{ eV}$$

Figure S8. CV of (a) TiO_2 , (b) Sb_2S_3 and (c) BiNPs