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I. S1: RESISTANCE OF BI-BASED NANOWIRES

Fig. 1a shows the four-terminal resistance of the Bi-based nanowires as a function of the bath temperature T . The
Bi nanowires (Bi 1 (170 nm), Bi 2 (210 nm) and Bi 3 (550 nm)) exhibit a semimetallic-like temperature dependence
of the resistance. A linear representation of the pronounced temperature dependence of R of Bi 3 is given in Fig. 1b.
The Bi/TiO2 core/shell nanowires show an increase of the resistance with decreasing bath temperatures.
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FIG. 1. Resistance of the Bi-based core/shell nanowires. a, Four-terminal resistance R4p of the Bi-based core/shell
nanowires as a function of the bath temperature T . Bi nanowires exhibit a semimetallic temperature dependence. Bi/TiO2

nanowires show a semiconducting behavior of the resistance. b, Four-terminal resistance R4p of Bi 3 (550 nm) as a function
of the bath temperature T in a linear representation of R(T ). The resistance is decreasing with decreasing bath temperatures
from T = 340K down to T = 270K. Below T = 230K, the resistance is increasing with decreasing temperatures. From
the temperature dependence of the electrical conductivity the modulus of the thermal activation energy of Bi 3 (550 nm) is
determined to |2.0± 0.1| meV in the temperature range from 100K to 200K.
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II. S2: DETERMINATION OF THE THERMAL CONDUCTIVITY OF BI-BASED NANOWIRES

The thermal conductivity λ of the Bi-based nanowires was determined by the increase of the resistance of the wire
due to self-heating [6]. A current was applied at the outer contacts of the nanowire and gradually increased. λ is
given by

λ =
1

12

αlR

A

dP

dr(P )
. (1)

α is the temperature coe�cient of the resistance of the nanowire, R is the four-terminal resistance, l is the length,
A is the cross-sectional area of the nanowire, P is the resulting power in the nanowire based on the voltage drop
due to the applied current and r is the resistance of the nanowire at a certain power. The main contributions to
the uncertainty of the thermal conductivity are coming from the determination of the nanowire length, the resistance
increase and the temperature coe�cient of the resistance.
Fig. 2 shows the resistance r of Bi 2 (210 nm) as a function of the power P in the nanowire due to the applied

current at 300K. The slope of the corresponding curves yields the relation between r and P that is necessary in order
to determine the thermal conductivity.
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FIG. 2. Resistance change of a Bi nanowire due to self-heating. a, Four-terminal resistance r of Bi 2 (210 nm) as a
function of the power P in the nanowire due to the applied current at T = 300K. The slope of the red line (linear �t) yields
the relation between r and P that is used to determine the thermal conductivity.
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III. S3: PROCESS OF LATTICE RELAXATION

The proposed process of lattice relaxation is as follows. For Bi/TiO2 3 (590, nm), the change of the electrical
conductivity occurred at a bath temperature of 147K. Two I-U curves of this nanowire were taken at this bath
temperature which are given in Fig. 3. The resulting four-terminal resistance R of the second measurement is 19
times smaller than the resistance of the �rst measurement. Three minutes elapsed between both measurements.
However, the measurement setup was not changed before, during or after the resistance change. As a result of the
lattice relaxation, the semiconducting behavior of the electrical conductivity, which was induced by the strain e�ect
of the shell, changed back to the semimetallic state, the original state of the Bi nanowires without a shell. This
semiconducting to semimetallic transition also leads to a signi�cant reduction of the absolute Seebeck coe�cient.
The strain release can be attributed to the di�erent thermal expansion coe�cients of Bi (αBi,c-axis ≈ 17.4·10−6K−1)

at room temperature [7] and of TiO2 (αTiO2,c-axis = 8.4 · 10−6K−1 up to αTiO2,c-axis = 9.4 · 10−6K−1) at room
temperature [8]. As a result, the contraction of the Bi core is estimated to ∆d ≈ 2.5 nm at 147K compared to the
original diameter during the manufacturing process. This leads to the irreversible lattice relaxation.
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FIG. 3. Resistance change of Bi/TiO2 3 (590,nm) due to lattice relaxation. Measured voltage U of the nanowire
before and after the lattice relaxation as a function of the applied current I. The four-terminal resistance R of the nanowire is
after the lattice relaxation 19 times smaller than before.
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IV. S4: RESULTS AND DISCUSSION

A. Structural properties of Bi/Te nanowires

The distinct interface between the tellurium (Te) shell and the bismuth (Bi) core of Bi/Te nanowire (Bi/Te 1
(370 nm)) can been seen in the conventional transmission electron microscopy image in Fig. 4a. Elemental line scan
obtained across the Bi/Te nanowire by energy dispersive X-ray (EDX) spectroscopy is given in Fig. 4b. The tellurium
shell distribution of the Bi/Te core/shell nanowire (Bi/Te 1 (370 nm)) is not uniform which indicates the di�erent
Te shell thickness on both sides of the nanowire (also see the image obtained by scanning transmission electron
microscopy below the EDX line scan). A non-uniform shell can be achieved when the nanowire is not completely
perpendicular to the growth substrate during the sputtering process of the shell. In this case the nanowire shadowing
e�ect with respect to the Te adatoms results in formation of a shell with a non-uniform thickness. The in�uence of
the non-uniform shell on the thermoelectric transport properties is discussed later.
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FIG. 4. Structural properties of the Bi/Te core/shell nanowires. a, Conventional transmission electron microscopy
image that shows a section of the Bi/Te nanowire (Bi/Te 1 (370 nm)). b, Energy dispersive X-ray spectroscopy presenting the
tellurium shell distribution of the Bi/Te core/shell nanowire (Bi/Te 1 (370 nm)).

Sample Diameter d (nm) Length l (µm) Shell thickness t (nm)

Bi/Te 1 370± 5 21.7± 0.4 10− 30

Bi/Te 2 490± 20 12.9± 0.8 10− 30

Bi/Te 3 490± 10 12.9± 0.6 10− 30

TABLE I. Geometry parameters. Overview of entire diameter d, length l and shell thickness t of bismuth/tellurium (Bi/Te)
nanowires. Bi/Te nanowires are coated with a non-uniform Te-shell with a thickness of 10nm − 30nm by radio frequency
sputtering. The geometry parameters have been determined by scanning and transmission electron microscopy.

B. Electrical properties

Fig. 5a shows the electrical conductivity σ of the Bi/Te nanowires as a function of the bath temperature T .
Moreover, σbulk (perpendicular to the trigonal axis) from Ref. [1] is added to the diagram. Like for the Bi nanowires,
the Bi/Te core/shell nanowires show also a reduced electrical conductivity compared to the bulk material. Moreover,
the shell material can have an additional in�uence on the electrical conductivity. Kim et al. showed that the electrical
conductivity of Bi/Te nanowires can be further reduced compared to Bi nanowires and to the bulk material due the
compressive strain e�ect of Te shell on the Bi core [3, 4]. This was observed for Bi/Te nanowires with a uniform Te
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shell thickness. However, the Bi/Te nanowires with a non-uniform shell thickness, which were investigated in this
work, showed a reduction of the electrical conductivity compared to the bulk material that is in general not as large
as for the Bi/Te nanowires with a uniform Te shell. This can be attributed to the strain e�ect of the shell on the core
that will be larger for a uniform shell thickness than for a non-uniform shell. Furthermore, bismuth and tellurium
are both conductive materials. As a result, the electrical conductivity has to be considered as parallel conduction in
both materials. The total electrical conductivity of such a combination can be written as

σtot =
ABiσBi +ATeσTe

ABi +ATe

. (2)

ABi and ATe are the cross-sectional areas of Bi and Te, respectively. σBi and σTe are the partial conductivities of Bi
and Te, respectively. The in�uence of the Te shell thickness on the reduction of the total electrical conductivity σtot is
illustrated in the following example. Taking Eq. 2 and the electrical conductivity of Bi bulk σBi,bulk = 901600 Ω−1m−1

[1] and Te bulk σTe,bulk = 185 Ω−1m−1 [5] and assuming the cross-sectional area of a nanowire with a total diameter
of 300 nm results in a reduction of σtot by 13% compared to σBi,bulk if the Te shell thickness is 10 nm or in a reduction
of σtot by 36% if the Te shell thickness is 30 nm. As a result, a uniform Te shell will lead to a larger reduction of σ
compared to the bulk than a non-uniform shell.

C. Thermoelectric properties

Fig. 5b shows the absolute Seebeck coe�cient S of the Bi/Te nanowires as a function of the bath temperature
T . Sbulk (perpendicular to the trigonal axis) from Ref. [1] is added to the diagram. In general, for Bi/Te core/shell
nanowires the direct in�uence of the Te shell on the total Seebeck coe�cient as part of a parallel conduction model
can be neglected due to the larger cross-sectional area and electrical conductivity of the Bi core compared to the Te
shell. S of the Bi/Te core/shell nanowires is larger than that of Bi bulk. The absolute Seebeck coe�cient of Bi/Te 1
(370 nm) is increased by 27 % compared to the bulk material at T = 290K and it has the largest S of all investigated
Bi-based nanowires in this work. This can be attributed to the compressive strain e�ect of the Te shell on the Bi core
as previously reported in Ref. [3, 4]. However, S is smaller compared to the data given in Ref. [3, 4]. This can be
explained by the non-uniform shell of the Bi/Te nanowires, as shown in Fig. 4a,b, and the resulting lower compressive
strain e�ect of the Te shell on the Bi core compared to Bi/Te nanowires with a uniform shell.

D. Thermal properties

For the Bi/Te nanowires it was shown, that the rough interface between the Bi core and Te shell can lead to
a reduction of the thermal conductivity as reported in Ref. [2�4]. However, the thermal conductivity of Bi/Te 1
(370 nm) is larger compared to other Bi/Te core/shell nanowires reported in Ref. [2�4]. This can be attributed to
the non-uniform Te shell as shown in Fig. 4a,b. As a result, the compressive strain e�ect is lower compared to Bi/Te
nanowires with a uniform shell. This will lead to a larger charge carrier contribution to the thermal conductivity
increasing the overall thermal conductivity. Fig. 5c shows the thermal conductivity λ of the Bi/Te nanowires as a
function of the bath temperature T . Moreover, λbulk (perpendicular to the trigonal axis) from Ref. [1] is added to
the diagram.
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FIG. 5. Electrical conductivity, absolute Seebeck coe�cient and thermal conductivity of the Bi/Te core/shell
nanowires with non-uniform Te shell. a, Electrical conductivity σ of the Bi/Te core/shell nanowires as a function of the
bath temperature T . σ is reduced compared to the bulk material but increased compared to a Bi/Te nanowire with a uniform
Te shell. b, Absolute Seebeck coe�cient S of the Bi/Te core/shell nanowires as a function of the bath temperature T . The
modulus of S is increased compared to the bulk material but decreased compared to a Bi/Te nanowire with a uniform Te
shell. c, Thermal conductivity λ of the Bi/Te core/shell nanowires as a function of the bath temperature T . The thermal
conductivity of the Bi/Te nanowires is reduced compared to the bulk material and exhibits an opposite temperature dependence.
The transport properties of Bi bulk (perpendicular to the trigonal axis) from Ref. [1] and of di�erent Bi/Te nanowires with
a uniform shell from Ref. [4] are added to the corresponding diagram. The Seebeck coe�cient of the of Bi/Te nanowire from
Ref. [4] was corrected by the absolute Seebeck coe�cient of the reference material.
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