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I.Comparison of functionals (PBE and HSE06) in find-

ing global minimum structures

Figure S1: Structures of different isomers of Ni4O7 clusters obtained from PBE (represented
by dashed blue line) and HSE06 (represented by dashed red line) exchange-correlation (εxc)
functionals. Dashed circles represent the global minima from the two functionals.
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Figure S2: Global minimum structures of Ni4OxCH4 clusters obtained from PBE and HSE06
εxc functionals. Dashed rectangle indicates the clusters having different global minima.

We have determined the energy of different isomers of Ni4O7 clusters from both the εxc

functionals viz. PBE1 and HSE06.2 From Figure S1, we have found that PBE εxc functional

predicts structure 1 as the global minimum isomer while structure 5 is the global minimum

isomer obtained from HSE06 εxc functional. Further, we have calculated the energy of

Ni4OxCH4 (0≤x≤6) series of clusters from PBE as well as HSE06 εxc functionals (see Figure

S2). We have noticed different trends of energy from both functionals. For Ni4O1CH4,

Ni4O2CH4 and Ni4O4CH4 clusters, PBE and HSE06 εxc functionals predict different global

minimum structures. As it is already well established that for oxygen molecule, HSE06 being

advanced functional gives correct binding energy,3 therefore, we have chosen HSE06 for our

oxide based clusters.
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II.Temperature control using Nose-Hoover thermostat

We have carried out aiMD simulations at five different temperatures in canonical ensemble

with time and time-step being 8 ps and 1 fs, respectively. Temperature control is realized

by employing the Nose-Hoover thermostat.4 Figure S3 shows the histogram that we have

obtained from aiMD simulation for Ni4O6CH4 cluster at T = 800 K. From the histogram,

we infer that average temperature of the simulation is indeed coming around the intended

temperature viz. 800 K. Therefore, Nose-Hoover thermostat is apt to control the tempera-

ture during simulation. Note that thermalization of system is very important and without

that there is sufficient chance of error. However, once the system is well thermalized at the

target temperature T , we can expect reasonably same numbers for (〈U〉T ) and (〈T 〉) (see

equation 1) from the residual run (not much of dependence on the length of the run within

reasonable error bar).

F (T ) = EDFT + UZPE︸ ︷︷ ︸
Uref

+
T

T◦
F harmonic
vibs (T◦)− T

∫ T

T◦

dT

T 2
(〈U〉T − U ref )︸ ︷︷ ︸

thermodynamic integration

−kBT
N

2
ln
T

T◦ (1)
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Figure S3: Histogram of Ni4O6CH4 configuration at 800 K. The average temperature ob-
tained is (a) 804 K after 4 ps (b) 800 K after 5 ps (c) 801 K after 6 ps (d) 796 K after 7
ps.

Here, we have taken a test case of Ni4O6CH4. We have run 8 ps MD and plotted four such

historgrams, where (a) 4 ps (b) 5 ps (c) 6 ps and (d) 7 ps data are used for thermalization.

The remaining (a) 4 ps (b) 3 ps (c) 2 ps and (d) 1 ps are used to plot the figure below. Note

that the target T is 800 K and the average 〈T 〉 found from case (a)-(d) are respectively (a)

804 K (b) 800 K (c) 801 K and (d) 796 K. Clearly, here the system is already thermalized

at (a) and once it is ensured, the rest of the data remain more or less same to give the

same 〈T 〉 within accepted error bar of ±10 K max. Now time required for thermalization

slightly increases with number of atoms. This is why we have kept data for thermalization

to be large enough (∼ 6−7 ps) and used the residual (∼ 2−1 ps) to determine 〈U〉T and 〈T 〉

respectively to ensure error free simulation numbers.
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III.Contribution of Fvib in all Ni-based clusters at differ-

ent temperatures.

The total Helmholtz free energy [F(T )] is written as:

F(T ) = Ftrans(T ) + Frot(T ) + Fvib(T ) + Fsym(T ) + Fspin(T ) (2)

where Fvib is given by the following equation:

Fvibs =
∑
i

hνi
2

+
∑
i

kBT ln

[
1− exp

(
hνi
kBT

)]
(3)

To see the comparative contribution of Fvib at different temperatures, namely, T=100 K,

T=300 K and T=800 K, we have plotted the bar graph as shown in FIG. S4.

Figure S4: Fvib contribution (in %) in all Ni-based clusters at T=100 K, T=300 K and
T=800 K, respectively. (Here, Me represents CH4).

From FIG. S4, we can see that Fvib contributes more at higher temperatures.
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IV.Thermodynamic integration for Helmholtz free en-

ergy evaluation

We start from the fundamental relation between Helmholtz free energy F (T ) and partition

function Z .

F (T ) = −kBT lnZ = −kBT ln

∫
e−βHdp dr (4)

where H (i.e., kinetic energy, K, plus potential energy, U ) is the Hamiltonian of the system

(cluster), and β = 1/kBT . This on integration gives us

F (T ) = −kBT ln

∫
e−βUdr +NkBT ln Λ(T ) (5)

where N is number of degrees of freedom and Λ(T ) is the result of integration over momentum

space and always valid only if the system is classical. In terms of β, the expression for Λ(β)

is: Λ(β) =
√

h2β
2πm

Equation 1 can then be written as:

βF (β) = − ln

∫
e−βUdr +N ln Λ(β) (6)

∂[βF (β)]

∂β
=

∂
∂β

∫
e−βUdr∫
e−βUdr

+N

∂
∂β

Λ(β)

Λ(β)
= 〈U〉β +

N

2β
(7)

βF (β) = β◦F (β◦) +

∫ β

β◦

〈U〉β dβ +
N

2

∫ β

β◦

∂β

β
(8)

Now F(β◦) can be written as:

F (β◦) = EDFT + UZPE︸ ︷︷ ︸
Uref

+F vib(β◦) (9)
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where from quantum approach, we have

F vib
quantum(β) = β−1

N∑
i=1

ln(1− e−βhνi) (10)

and from classical approach, we have

F vib
classic(β) = β−1

N∑
i=1

ln(βhνi) (11)

Therefore, we get the final expression of βF(β) as shown below:

βF (β) = β◦U
ref + β◦F

vib(β◦) +

∫ β

β◦

〈U〉β dβ +
N

2
ln
β

β◦
(12)

We call the above equation as our master equation and we will approximate this equation

as given below.

Here, we write 〈U〉β as follows:

〈U〉β → (〈U〉β − U ref ) (13)

Therefore, on substituting this into Equation 9, we get

βF (β) = β◦U
ref + β◦F

vib(β◦) + (β − β◦)U ref +

∫ β

β◦

(〈U〉β − U ref ) dβ +
N

2
ln
β

β◦
(14)

= βU ref + β◦F
vib(β◦) +

∫ β

β◦

(〈U〉β − U ref ) dβ +
N

2
ln
β

β◦
(15)

This can be rewritten in terms of T=1/kBβ as follows:

F (T ) = EDFT + UZPE +
T

T◦
F vib(T◦)− T

∫ T

T◦

dT

T 2
(〈U〉T − U ref )− kBT

N

2
ln
T

T◦
(16)
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V.Probability of occurrence of different type of config-

uration

If N is the total number of all possible configurations and ∆Gn is the Gibbs free energy of

formation of specific type (say n) configuration, then the number of type-n configurations,

Nn, as per Fermi-Dirac statistics is given as:

Nn =

(
N−

∑
m 6=n

Nm

)
1

eβ∆Gn + 1
(17)

where β =1/kBT and Nm is any other considered configuration type.

Similarly, the number of type-p configurations, Np, is given as:

Np =

(
N−

∑
m 6=p

Nm

)
1

eβ∆Gp + 1
(18)

Rearranging above equations, we get

Nne
β∆Gn + Nn = (N−

∑
m 6=n

Nm) (19)

Npe
β∆Gp + Np = (N−

∑
m 6=p

Nm) (20)

On solving Equation 16 and Equation 17, we get

Nne
β∆Gn − Npe

β∆Gp + Nn − Np = Nn − Np (21)

Nne
β∆Gn = Npe

β∆Gp (22)
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Finally, we get the following expression

Nn

Np

= eβ(∆Gp−∆Gn) (23)

Similarly, we can write

Nm

Nn

= eβ(∆Gn−∆Gm) (24)

On substituting the value of Nm from Equation 21 to Equation 14, we get

Nn =

(
N−

∑
m 6=n

Nn e
β(∆Gn−∆Gm)

)
1

eβ∆Gn + 1
(25)

Nne
β∆Gn + Nn = N−

∑
m 6=n

Nn e
β(∆Gn−∆Gm) (26)

Nn(1 + eβ∆Gn) = N−
∑
m 6=n

Nn e
β(∆Gn−∆Gm) (27)

Nn

(
1 + eβ∆Gn +

∑
m 6=n

eβ(∆Gn−∆Gm)

)
= N (28)

Nn

N
=

1(
1 + eβ∆Gn +

∑
m 6=n e

β(∆Gn−∆Gm)
) (29)

Nn

N
=

e−β∆Gn(
e−β∆Gn + 1 +

∑
m 6=n e

−β∆Gn

) (30)

Therefore, we get the final expression of probability of occurrence of type-n configurations

as follows:

Nn

N
=

e−β∆Gn

1 +
∑

m e
−β∆Gm

(31)
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