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Supplementary Note 1. Spectra due to spontaneous changes of tip sharpness 

 

 
Figure S1. (a) Similar spectra before the sharpness changed. (b) Spectra with FERs of different shapes 

and energies due to spontaneous changes of tip sharpness. The numbers at the right-hand side indicate a 

time sequence of different spectra. (b) FFER for FERs in each spectrum in (b) versus time sequence, 

revealing that FFER was fluctuated with time. FFER for FERs in each spectrum was calculated by Eq. (1) in 

the text. 
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Supplementary Note 2. Observing FER linewidth on Ag(100) surface 

 

 
Figure S2. (a) A differential Z-V spectrum with nine FER peaks marked by numbers. Zero spectral 

intensity is indicated by a dashed line, revealing that the intensities of valleys (marked by arrows) 

around the peak of FER 1 are zero. Inset: a typical STM image of the Ag(100) surface. The image size 

is 100 nm×100 nm. (b) Differential Z-V spectra with seven, eight, nine, and 11 FERs. (c)-(f) Lorentzian 
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fittings of FER 1 in (b). The linewidths extracted from the fittings modulate with the FER numbers. 

FER spectra were acquired at 78 K under 10 pA. (g)–(j) FER spectra with different FER number 

acquired at 5 K under 10 pA, 100 pA, 1 nA, and 10 nA, respectively, and Lorentzian fittings of FER 1, 

showing the linewidth modulation with the number of FERs. 

 

 

Supplementary Note 3. Observing FER linewidth on Ag(111) surface 

 

 

Figure S3. (a) A typical STM image of the Ag(111) surface. The image size is 100 nm×100 nm. (b) A 

differential Z-V spectrum with nine FER peaks marked by numbers. Zero valley intensity is not 

observed because of no band gap. (c) Lorentzian fittings of FER 1 in (b). Average linewidth of FER 1 

versus FER number, showing that the average linewidth decreases with the number monotonically. 

Because of no band gap, the FER electron can transmit through the surface due to the density of states 

(Ref. 21). As a result, the probability that a relaxed electron coexists with an FER electron would 

decrease, and the probability that the relaxed electron engaging in resonance trapping largely prolongs 

the lifetime of resonant electrons would be also substantially reduced. The linewidth modulation 

vanishes on Ag(111) surfaces accordingly.  
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Supplementary Note 4. Correlation between the tip sharpness and electric field of 

FERs 

The tip sharpness leads to FFE for field emission being stronger than FFER for FERs. If 

we define a factor f = FFE / FFER, then f is larger than 1 for an STM tip, and f is larger 

when the tip is sharper. For a planar tip, f = 1 because FFE is equal to FFER in this case. In 

our experiment, the set current was the same for acquiring spectra with various 

numbers of FERs. Therefore, the electric field FFE of generating field emission current 

was the same for any sharpness. As a result, FFE = f FFER is a constant, and f is inversely 

proportional to FFER. Accordingly, a sharper tip corresponds to a weaker FFER.  

Moreover, under the same applied voltage and distance between the tip and sample, 

FFE is stronger, and more field emission current can be generated for a sharper tip. 

Therefore, for the same current, the distance should be larger for a sharper tip. Figure 

S3 depicts Z-V spectra with three, four, and five FERs shown as step features. Because 

the Z-V spectrum provides information on the distance between the tip and sample, Fig. 

S3 reveals that the distance enlarged with increasing the number of FERs when the tip 

was in the state of field emission (bias voltage > 6 V). Therefore, this result indicates 

that a sharper tip corresponds to a weaker FFER. 

 

 

Figure S4. Z-V spectra with three, four, and five FERs shown as step features. 

 

 

S5 



Supplementary Note 5. Simulation of the FER spectrum 

For simulating the FER spectrum without including the band structure, the potential in 

the sample is a constant and lower than the vacuum level by V0, as depicted in Fig. S4, 

and the potential in STM junction is linear. When electrons at the Fermi level of the 

tip tunnel into the vacuum, their electronic wave will be partially reflected from the 

surface (marked 0) due to an abrupt potential change and totally reflected from the 

classical turning point (marked a ). Although field emission electrons will eventually 

transmit through the surface into the sample interior, they may experience multiple 

reflection between the surface and the classical turning point before transmitting. As a 

result, the initial wave function is decomposed into t, <, and >. t is the 

transmission wave function in the sample, and < (>) is the wave function for 

electrons moving toward (away) from the surface. When the superposition of < 

and> becomes standing waves, quantized states causing FERs are formed, which is 

similar to the case of the quantum well state (QWS) in the metallic films. 

 

Figure S5. Energy diagram for simulating FER spectra without including the band structure of the 

sample. 

Paggel et al. had demonstrated that the QWS spectra can be fit by the absolute 

square of an interference factor, which is the Fabry Pérot formula for electrons in 

QWS1. Based on this study, we expect that the FER spectra can be simulated by 

formulating an interference factor for this case, which is 
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where rc and rv are the reflection coefficients at the surface and the classical turning 

point, respectively. E is the energy of field emission electrons, F is the electric field 

for field emission, and x is the distance from the surface. In Eq. (1), there is no 

damping term as in the case of QWS because field emission electrons are in the 

vacuum. Due to a total reflection from the classical turning point,  
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according to previous studies2,3. We can obtain rc from t, <, and >. The wave 

function in a linear potential is Airy function,2 i.e 
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( ( ))jA x is < and ( ( ))jB x is >. t is simply the plane wave, i.e. 
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Then the FER spectrum can be simulated by 
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Figure S5 is the simulation for the electric field from 0.1 to 0.2 V/Å, displaying the 

oscillatory characteristic in FER spectra and that the number of FER peaks decreases 

with increasing the electric field, consistent with experimental observation. Moreover, 

Fig. S6 displays plots of the energies of FER peaks in Fig. S5 versus (n-1/4)2/3. The 

results show that the data points can be fit well by the lines corresponding to the set 

electric fields. Therefore, the simulation is valid. Figure S7 depicts the Lorentzian 

fittings of the FER peaks of the first order (marked 1) in simulated spectra in Fig. S5, 

showing that the value of the linewidth extracted from the fitting is larger for a stronger 

electric field. Therefore, the inverse of the linewidth decreases with increasing the 

electric filed, as shown in Fig. 3(d). This variation is the same for FER peaks of higher 

orders. 

 

Figure S6. The simulation of FER spectra for the electric field ranging from 0.1 to 0.2 V/Å under V0 = 10 

eV and sample work function of 4.5 eV.  
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Figure S7. Plots of the energies of FER peaks in Supplementary Figure 3 versus (n-1/4)2/3. 

 

 
Figure S8. Lorentzian fittings of the FER peaks of the first order (marked 1) in simulated spectra in 

Supplementary Figure 2. 
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Supplementary Note 6. Emission of two electrons through the exchange 

interaction 

Based on the model of an STM tip in Fig. 2(a), field emission current is emitted from 

the apex of the protrusion because that is where the electric field is the strongest. Let us 

model the protrusion as a cone, as shown in Fig. S8(a). The axis (dashed line) of the 

cone is in the z direction normal to the sample surface. According to the tunneling 

theory of field emission, which is based on the free electron gas model, electrons at 

Fermi level EF of the tip have the highest probability of tunneling through the energy 

barrier at the metal surface into the vacuum to be the field emission current. Therefore, 

it is plausible that the resonant electrons in an FER are from the energy state at the 

Fermi level of the tip. Because the strongest electric field at the apex is in the z direction, 

the width of the energy barrier in the z direction is the shortest. As a result, electrons in 

the tip prefer to tunnel along the z direction, and the tunneling probability is only 

dependent on the electron energy Ez in the z direction. 

The tunneling probability is higher for larger Ez because electrons with larger Ez 

face an energy barrier with a shorter width w and lower height h, as illustrated in Fig. S8 

(b). Thus, electrons at the Fermi level have the highest tunneling probability when their 

energies in the x and y directions (Ex and Ey) are zero. Therefore, resonant electrons in 

FERs are from the energy state: Ex = 0, Ey = 0, Ez = EF. This energy state can 

accommodate two electrons with opposite spins. Let us define electron 1 with spin up 

and electron 2 with spin down; we suggest that these two electrons can be successively 

emitted into the quantized state in the FER through exchange interaction. 

 

Figure S9. (a) Cone model for protrusion, where a dashed line indicates the axis of the cone in the z 

direction normal to the sample surface. (b) Energy diagram for field emission. 
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If electron 1 is emitted first, because of the reflection at the sample, its wave 

function is a standing wave and a decay wave, as depicted in the upper schematic in Fig. 

S10. Although electron 2 is not emitted yet, its wave function in the vacuum would not 

vanish, but would include a decay wave and travelling wave, as displayed in the lower 

schematic. Evidently, the wave functions of the electrons 1 and 2 overlap in the vacuum. 

According to quantum mechanics, the exchange interaction exists between electrons 1 

and 2 because of the overlap of wave functions, and the total wave function of these two 

electrons should be antisymmetric. The total wave function is the product of a total 

space wave function and total spin eigenfunction. Because the spins of electrons 1 and 2 

are opposite, the total spin eigenfunction is antisymmetric. As a result, the total space 

wave function should be symmetric, because of which the probability density of two 

electrons appearing at the same location is much higher than them being separated.  

 

Figure S10. Overlap of the wave functions of a resonant electron in the STM junction and an electron 

at the Fermi level of the STM tip. 

 

This situation implies that electron 1 can effectively attract electron 2 into vacuum 

through the exchange interaction, causing the emission of electron 2. To establish a 

standing wave, electron 1 should motion back and forth for a round trip in the STM 

junction. Thus, the time interval between the emissions of these two electrons is the 

round-trip time of electron 1, which, according to the inset in Fig. 3(d), is several 
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femtoseconds. Because of the exchange interaction, the tunneling process in the FER 

is two-electron tunneling, which is fundamentally different from one-electron 

tunneling in normal field emission. However, when the bias voltage of STM is low, 

the tunneling current is dominated by one-electron tunneling because the wave 

function in STM junction is simply the evanescent wave. 
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