Electronic Supplementary Information for:

Scalable colloidal synthesis of Bi$_2$Te$_{2.7}$Se$_{0.3}$ plate-like particles give access to high-performing n-type thermoelectric material for low temperature application

Nagendra S. Chauhan,¹ Oleg I. Lebedev,² Kirill Kovnir,³,⁴ Sergey V. Pyrlin,⁵ Luis S.A. Marques,⁵ Marta M.D. Ramos,⁵ Brian A. Korgel,⁶ Yury V. Kolenko¹*

¹International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
²Laboratoire CRISMAT, UMR 6508, CNRS-Ensicaen, Caen 14050, France
³Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
⁴Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, USA
⁵Centro de Física das Universidades do Minho e do Porto, Universidade do Minho, 4710-057, Braga, Portugal
⁶McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
Fig. S1. Sintering profile for spark plasma sintered Bi$_2$Te$_{2.7}$Se$_{0.3}$.

Fig. S2. Schematic representation of direction and geometry for measurement of (a) thermal, and (b) electrical characterisation.
Fig. S3: Repeated measurement of temperature dependent electrical transport for synthesized Bi$_2$Te$_{2.7}$Se$_{0.3}$ alloys (a) electrical conductivity, and (b) Seebeck coefficient.

Fig. S4. Left: doping and temperature effect on band structure. Special points correspond to the first Brillouin zone of rhombohedral lattice.1,2 Right: correspondence between conventional hexagonal (solid lines) and primitive rhombohedral lattice (dashed lines).

References: