Electronic Supplementary Information

Phosphorescent MoS₂ Quantum Dots as a Temperature Sensor and Security Inks

Manivannan Madhu,^a Chi-Yu Lu,^b and Wei-Lung Tseng*a, c

^a Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung 80424, Taiwan.

^b School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road,

Sanmin District, Kaohsiung 80708, Taiwan

^c Department of Biochemistry, College of Medicine, Kaohsiung Medical University,

Kaohsiung, 80708 Taiwan

Correspondence: Wei-Lung Tseng; E-mail: tsengwl@mail.nsysu.edu.tw;

Abstract

We included detailed information associated with TEM images, AFM images, absorption spectra, and fluorescence spectra of the FL-MoS₂ QDs, FL-WS₂ QDs, and N, S-doped CDs (Figures S1-S4), FT-IR spectra of the FL-MoS₂ QDs in the absence and presence of PVA matrices (Figure S5), TEM image and air stability of the FL-MoS₂ QD/PVA composites (Figures S6 and S7), phosphorescence of the CD/PVA composites as a function of temperature (Figure S8), and a comparison of the PQY of the FL-MoS₂ QD/PVA composites with previously reported PMs (Table S1).

Figure S1. TEM images (top panel) and size distribution (bottom panel) of the (A) FL-MoS₂ QDs, (B) FL-WS₂ QDs, and (C) N, S-doped CDs.

Figure S2. (A, B, C) AFM images and (D, E, F) height profiles of the (A, D) FL-MoS₂ QDs, (B, E) FL-WS₂ QDs, and (C, F) N, S-doped CDs.

Figure S3. Absorption spectra of the (A) $FL-MoS_2$ QDs, (B) $FL-WS_2$ QDs, and (C) N, S-doped CDs.

•

Figure S4. Fluorescence spectra of the (A) FL-MoS₂ QDs, (B) FL-WS₂ QDs, and (C) N, S-doped CDs.

Figure S5. FT-IR spectra of PVA polymers (black line), the FL-MoS₂ QDs (red line), and the FL-MoS₂ QD/PVA composites (blue line).

Figure S6. TEM image of the FL-MoS₂ QD/PVA composites. The red arrow indicates the aggregation of the FL-MoS₂ QDs. An enlarged image (right side) of the FL-MoS₂ QD/PVA composites in the yellow circle (left side).

Figure S7. Time-evolution photographs of the FL-MoS₂ QD/PVA composites in (A) ambient air and (B) N_2 gas before and after turning off a UV lamp (365 nm) at ambient temperature.

Figure S8. (A) Time-evolution photographs of the CD/PVA composites before and after turning off UV lamp at different temperatures. (B) Phosphorescence lifetime of the CD/PVA composites as a function of temperature from 30 to 90 °C

Table S1: Comparison of the present $FL-MoS_2$ QD/PVA composites with previously reported PMs in terms of QYs.

Materials	Environmental	QY (%)	References
	condition		
Organic	Aqueous	1.59	Adv. Mater. 2017, 1606665
nanoparticles	solution		
Zeolitic	Organic solvent	0.82	Chem. Commun., 2017, 53, 1801–
imidazolate			1804
framework-8			
Organic	Organic solvent	20	Angew. Chem. Int. Ed. 2016, 55, 1–
molecules			7
Organic	Aqueous	11.23	Sci. Adv. 2018;4: eaas9732
materials	solution		
Carbon dots	Aqueous	1.3	Nat. Commun. 2019, 10, 206.
	solution		
Carbon dot@	Aqueous	5.7	ACS Cent. Sci. 2019, 5, 349-356
Zeolite	solution		
Polymer carbon	Aqueous	28.77	Angew. Chem. Int. Ed. 2018, 57,
dots	solution		2393 –2398
Organic clusters	N/A	20	Nat. Commun. 2019, 10, 5161.
Organic	Aqueous	24	Angew. Chem. Int. Ed. 2014, 53,
materials	solution		11177 –11181
Organic	Organic solvent	2.9	Nat. Chem., 2011, 3, 205–210.
materials			
Organic	N/A	13	J. Mater. Chem. C, 2018, 6, 4603–
materials			4626
Carbon dots	Aqueous	3.45	Adv. Funct. Mater. 2018, 1800791
	solution		
Layer-by-layer	N/A	2.2	Nano Res. 2017, 10, 3606–3617.
assembly			
Metal-organic	Organic solvent	4.76	Chem. Sci., 2016, 7, 4519–4526
frameworks			
Carbon dots	Powder	4.2	Angew. Chem. Int. Ed. 2020, 59, 1263-1269.
Single-	Solution	2.6	Adv. Optical Mater. 2017, 1600996
conjugated			
aromatic unit			

Organic	N/A	7.2	Nat. Commun. 2017, 8, 416
molecules			
Organic	Aqueous	11.23	Sci. Adv. 2018;4: eaas9732
materials	solution		
Organic	crystal	1.4	Angew. Chem. Int. Ed.2019, 58,
molecule			12102-12106.
Carbon dots	N/A	7	Chem. Mater. 2016, 28, 8221-8227
Carbon dots	powder	17.41	Nanoscale, 2019, 11, 16036–16042
Organic	N/A	9.58	J. Mater. Chem. C, 2019, 7, 230–
materials			236
Carbon dots	N/A	14	J. Mater. Chem. C, 2018, 6, 7890– 7895
Layer-by-layer	N/A	1.51	J. Mater. Chem. C, 2018, 6, 4444–
assembly			4449
Polyphosphazen es derivatives	Organic solvent	1.0	Adv. Mater. 2020, 1907355
Carbon dots	Paper stripe	15.85	Carbon 2019, 152, 609–615
Organic dyes	Solid state	1.7	Dyes Pigm. 2012, 95, 161–167
Organic dyes	N/A	0.003	J. Photoch. Photobio. A 2014, 285,
Organic	Ν/Δ	11 /	Nano Res 2020 13 875-881
materials		11.4	Nano IXes. 2020, 13, 073–001
FL-MoS ₂	Solid	20	Current work
QD/PVA			
composites			

N/A: Not available.