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S1. INTRA-BAND POLARIZATION FUNCTION
In this section, we will systematically derive the intra-band polarization function
and its long-wavelength limit under the random-phase approximation (RPA) approach.

The intra-band polarization function of band £, , is [1, 2]
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Eq. (3) can also be written as an integral, this gives
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S2. DETAILS OF THE ELECTRON-HOLE MODEL
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We supposed that the two-dimensional (2D) DNL is formed from two crossing

bands described by parabolic dispersion relations as follows:

h? ) h? )
Ek,lzrk ’Ek,ZZ_Fk +E,), (7)

m, m,

with m, >0,m, >0 and E, >0. Assuming that electron wavefunctions of the two
bands are orthogonal, the inter-band transition of electrons is prohibited. We therefore

only considered the intra-band contribution to the polarization functions.

Under long-wavelength limit, the polarization function of band E, | is

I1,(q,0) = zhz P I (Ek+q1 kl)dk 3

Ey <Ef

Due to the region where E, | < E, has the symmetry of space inversion,

I,(¢,0)= _[ (Ek+q1 —k+q,1 _Ek,l _E—k,l)dzk' 9)

Ey <E;

2h2 2

Considering that £, = E_, |, Eq. (9) can also be written as

k,1°

IT,(q,0) = I (Ek+ql k—q.1 2Ek,1)d2k' (10)
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Considering the Taylor's expansion to the second order,
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Combining Eq. (7), Eq. (10) and Eq. (11), we finally obtain

g_
4w’ m,

I1,(q,0) = 1y (12)

where k,, is the Fermi wave vector of band E, . The polarization function can also

2

be written as I1,(q,®) = where n, = f—;k@ is the carrier density of band £, .
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It is exactly the polarization function of the 2D electron gas [3].
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The polarization function of band E, , can be derived in a similar way. Under long-

wavelength limit,

1

Hz(qi a)) 2h2 2

| (Brpo—E)d k. (13)

Ey,<Ej
Assuming that band E,, is periodic of reciprocal lattice vector, we obtain

.[ (Eriga —Ek’z)d2k=0 , where Q' is the Brillouin zone. Hence,
o

I1,(q,w) = - 2h2 2 J. (Ek+q2 k,z)dzk
Ey,>Ef
(14)
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Combining Eq. (7) and Eq. (14), and performing a second order Taylor's expansion
similar to Eq. (11), we can obtain

Hz (qa a)) = g—
Anw”

i (15)

where £, is the Fermi wave vector of band E, ,. Then, we obtain the polarization

function of this system

2 2

ki, k
[1(¢.0) = I1,(¢, ) +I1,(¢. @) = 5 (L +=0)g (16)
drwo” m, m,
h* h .
Considering that —k,* =——=k,,” + E, = E,, we finally obtain
2m, 2m,
E,
(g, @) === =a (17)

The dispersion of plasmon mode of this system can be written as

2
ho= 8550 [g (18)
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S3. DETAILS OF THE TIGHT-BINDING MODEL FOR 2D PLASMONS IN
LIEB LATTICE
We first derive the intra-band polarization function of £, ;.
The dispersion of band E, | is
E,, =-2t(cosk, +cosk). (19)

Under long-wavelength limit, the polarization function I1,(q,®) is

I1,(q,0) = I (Ek+q,1 _Ekl)dzk > (20)

212 2
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E,
where Q: cos(kx)+cos(ky)>y(y:—2—;) , is the region where E, <E,, as

shown by shaded areas in Fig. 2(c). Assuming the whole Brillouin zone is Q, and Q;

is the region shown by white in Fig. 2(c) , hence

I (Ek+q,l _Ek,l)dzk:I (Ek+q,l _Ek,l)dzk - j (Ek+q,l _Ek,l)dzk . (21)
Q Q Q

Considering that the band E, , is periodic of reciprocal lattice vector, we can obtain

J.(Ekﬂl’l —E, )d’k=0, hence

Q
I (Ek+q,1 - Ek,l )dzk: - I (Ek+q,1 - Ek,1)d2k . (22)
O o

The region Q; is bounded by cos(k, )+ cos(k,)=u , which contains

k , = arccos(u +1),

k., =2r —arccos(u+1),

’ (23)
k,, =arccos(u—cosk,),

k,, =2x —arccos(u —cosk,),

with 4 < 0. Substituting Eq. (19) into Eq. (20) and using the relationship of Eq. (22),

we get
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Q
To calculate Eq. (24), the following calculation was performed:

[ cosk.dk =" dk, [ coskdk, =4z\-p* 201 ~2F,(u).

Q/

J. cosk d’k = j cosk d’k,

Q/ Q

[ sink,d’k = [ sink,d’k =0,
Q/ Q

where F|(x) is a function defined as

F(x)= jzﬂ_arCCOS(X+l) cos 7 arccos(x —cosn)dn .

arccos(x+1)
Substituting Eq. (25) into Eq. (24), we finally obtain
1
I1,(q, @) :ma(Z—cosqx —co0sq,),

with a=87t\—p* — 2 + 4tF, (14).

The intra-band polarization function of E, , can be derived in a similar way.

The dispersion of band E, , is
k
E, ,=A —4t'sin£sin—y.
’ 2 2
And the polarization function I1,(g,®) under long-wavelength limit is

=" 22 2 I (Ek+q,2 _Ek,z)dzk >
w

Q,

£,

!

k. .k
here Q.: s1n(?’“) sm(?y) >y(v=

by shaded areas in Fig. 2(d). The region €2, is bounded by
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(25)

(26)

27)

(28)

(29)

), is the region where E, , <E,, as shown



k., =2arcsinv,

k., =2m—2arcsinv,

);

kyl = 2arcsin( '
simn(—=

).

k,, =2 —2arcsin(

sin(?x)

Substituting Eq. (28) into Eq. (29), then we get

qx q k ky 2
Il,(q,0) = 2h2 5 (J.(cos 5 cos;—l)sm 5 ?d k
k
+J. sinﬁcos—ycos&sinq—ydzk
Q,
k
+j cosﬁsinisinﬁcosq—ydzk
2 2 2
k, :
+J. cosﬁcosisin&sinq—’dzk).
a2 2 2 2
To calculate Eq. (31), the following calculation was performed:
k » k,
jsin K gin o g2k = jk dk, n ks “xsin—dk, =16F,(v),
2 2 2 2

2

k k
j sinﬁcos—ydzk = I cosﬁsin—ydzk =0,
2 2 2 2

Q, Q,

k
I cosk—xcos—ydzk =0,
2 2

Q,

where F,(x) is a function defined as

F,(x)= J-ffarcsmwll —x* —sin’ ndn .

Substituting Eq. (32) into Eq. (31), we finally obtain

Hz(q,a)):m

with 8 = 64'F, (v).

Then the polarization function of this system can be written as

S7

QX q)’
l1—cos=—*cos—),
B( 5 2)

(30)

1)

(32)

(33)

(34)



(g, 0)=11,(q, ) +11,(q, @)

:ﬁ[a(?_—cosqx —cosq},)+ﬂ(l—c0s%cos%)]. )
The plasmon dispersion identified as the roots of &(q,®) =0 is
ho = 2¢° \/a (2—c0sqx+cosqy)+ﬂ(l—cosﬁcosﬁ]. (36)
eqr 2 2
Making the substitution cosx — 1—%)62 , Eq. (36) can be reduced to:
ho=yq . (37)

2 2
with y = /i\/hml—,uz =24 +2tF (1) +8t'F,(v) .

S4. SOME COMPUTATIONAL DETAILS OF TIGHT-BINDING MODEL
The parameters we use to calculate in Sec. II(B) are

t=0.5eV,t'=2.7eV,A=10.84eV, ¢ =1.5 a=3278A 1n=0.05V. The tight-
binding parameters come from fitting the bands of our TB model to Be,C monolayer,

as shown in Fig. S1. ¢ that we use to calculate is derived from fitting the plasmon

dispersion of the more complicated TB model constructed by WANNIER90 [4] to the

results of GPAW [5]. a is the lattice constant of Be,C monolayer.

S5. ELECTRONIC BAND STRUCTURES OF DIFFERENT DOPPING
LEVELS
The electronic band structures of pristine, hole-doped and electron-doped Be,C

monolayer are shown in Fig. S2.

S8



Figure S1. Band structure obtained from TB model and density-functional theory

calculations of Be,C monolayer.
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Figure S2. The electronic band structures of (a) pristine, (b) hole-doped and (c)

electron-doped Be,C monolayer, respectively.
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